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Abstract: In this paper, an analytical framework to evaluate the along-wind-induced dynamic responses of a transmission 
tower is presented. Two analytical models and a new method are developed: (1) a higher mode generalized force spectrum 
(GFS) model of the transmission tower is deduced; (2) an analytical model that includes the contributions of the higher modes 
is further derived as a rational algebraic formula to estimate the structural displacement response; and (3) a new approach, 
applying load with displacement (ALD) instead of force, to solve the internal force of transmission tower is given. Unlike 
conventional methods, the ALD method can avoid calculating equivalent static wind loads (ESWLs). Finally, a transmission 
tower structure is used as a numerical example to verify the feasibility and accuracy of the ALD method.
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1   Introduction 

Lattice high-rise structures such as transmission 
towers are lightweight, very tall, flexible structures 
characterized by low damping and sensitivity to wind 
loads (Li and Bai, 2006). The wind load must be 
accurately calculated prior to structural design. The 
wind load can be qualified through multiple-point 
synchronous scanning of pressures on the surface of the 
structural model in a wind tunnel, or by high frequency 
fore balance (HFFB) measurement. However, unlike 
for ordinary buildings, the wind load on transmission 
towers is difficult or may be impossible to measure using 
multiple-point synchronous scanning of pressures due to 
its high hollowness rate, while the HFFB measurement 
is usually used to estimate the generalized force of the 
fundamental mode and fundamental mode generalized 
force spectrum (GFS). Then, according to random 
vibration theory, the variance of the responses including 
only the first mode can be further obtained. However, 
higher modes may provide noticeable contributions 
to the responses, especially for slender structures like 
transmission towers. Systematic studies on evaluating the 

along-wind responses of latticed towers were conducted 
by Holmes (1994; 1996a, b). To better understand the 
response of the transmission tower-line systems to wind, 
a novel approach for wind tunnel aero elastic modeling 
of conductors was introduced in detail (Loredo-Souza 
and Davenport, 2001; Loredo-Souz, 1996). 

HFFB measurements on three semi-rigid tower 
models were performed in the TJ-1 boundary layer wind 
tunnel at Tongji University. The fundamental mode GFS 
of the transmission tower was obtained first, and then the 
higher mode GFS was expressed in analytical form (Zou, 
2006). In order to obtain the structural internal forces, 
such as can be achieved with the conventional processing 
approach, the equivalent static wind loads (ESWLs) that 
include only the fundamental modal contribution of the 
transmission tower were also established (Yu, 2006). 
In this paper, a practical numerical higher mode GFS 
model is presented for applications in design practice.  
It was developed on the basis of the fundamental mode 
GFS obtained from a wind tunnel model experiment, and 
adopted the height-independent fluctuating wind power 
spectral density and Shiotami-Type spatial coherence 
function. Then, an analytical model for the displacement 
response is further deduced. In the formulation, the 
contributions of higher modes are included and the 
conversion relationship between the unilateral and 
bilateral power spectral densities is taken into account. 
Moreover, unlike the conventional method, the applying 
load with displacement (ALD) method, which will be 
described in the next section, is adopted to calculate the 
internal forces. The two models and the ALD method 
constitute a new practical analytical framework for use 
in the design of transmission towers. 
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2   Practical analytical framework  

2.1  Practical higher mode GFS model

The dynamic equilibrium equation of a structural 
system with a fixed base can be written as 

My Cy Ky F&& &( ) ( ) ( ) ( , )t t t z t+ + =                (1)

where M, C and K denote the mass, damping and stiffness 
matrices; y(t), ý (t) and ÿ (t) are the displacement, velocity 
and acceleration vectors, respectively; and F(z, t) is the 
external force vector. Then, the typical uncoupled modal 
equation for the structural system is expressed in the 
following form. 

M q t q t q t F z tn n n n n n n n&& &( ) ( ) ( ) ( , )+ +  =2 2ξ ω ω G       (2)

in which                      
 M n n n=ΦΦ ΦΦT M

F z t z tn n
G T( , ) ( , )=ΦΦ F

where Mn is the generalized mass; Φn and qn(t) are the 
modal and generalized displacement vectors; ξn and 
ωn represent the damping ratio and circular frequency, 
respectively; and Fn

G (z, t) is the generalized force, where 
the subscript (n) refers to the nth mode. According to the 
theory of quasi-stability, the nth modal generalized force 
is expressed as follows

                      
F z t C B z d z R z U z tn n

G
D

T( , ) ( ) ( ) ( ) ( , )= { }1
2

2ρ ΦΦ    (3)

where ρ denotes the air density; CD means the air 
damping coefficient; B(z) denotes the calculated width 
and d(z) implies the calculated height at altitude z; and 
R(z) refers to the ratio between the actual area of unit 
height and contour area and

U z t U z U z U z U z( , ) ( ) ( ) ( ) ( )2 2 22= + +% %              (4)

where Ū (z) and Ũ (z) are the mean wind speed and the 
fluctuating wind speed, respectively. Actually, compared 
with Ū (z)2 and 2Ū (z)Ũ (z), Ũ (z)2 is very small and can be 
neglected (American Society of Civil Engineers,1999). 
Here, the influence of Ū (z) is equivalent to static force, 
which does not need to be considered. Thus, substituting 
Eq. (4) into Eq. (3) yields

F z t C z tn n
G

D
T( , ) ( , )= { }ρ ΦΦ Γ                    (5)

in which 

Γ ( , ) ( ) ( ) ( ) ( ) ( , ) ( ) ( , )z t B z d z R z U z U z t z U z t= =% %κ     (6)

and                                                               
κ ( ) ( ) ( ) ( ) ( )z B z d z R z U z=                    (7)

Strictly speaking, it is more likely that fluctuating 
wind speed spectrum density would vary with the 
height, z. However, according to criteria specified for 
engineering applications, the influence of z on the 
structural responses is very small and can be neglected 
(Zhang, 2006). Hence, according to random vibration 
theory and matrix theory, the power spectrum of the nth 
generalized force can be expressed as

S f Cn n n
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∆( , , ) ( , , ) ( ) ( )z z f z z f z zi j i j= ρ κ κi j            (10)

where S(f ) represents the fluctuating wind speed 
spectrum density, which is independent of z, and ρ(zi, 
zj, f  ) is the correlation coefficient between zi and zj. 
In theory, the correlation coefficient is a multivariant 
function, related to both position and frequency. Here, 
Eq.(11) suggested by Shiotami is adopted because it was 
established on the basis of actual testing and is applicable 
to high-rise structures (Zhang, 2006), and is independent 
of frequency, making it convenient to use.

   ρ( , ) expz z
z z

Li j
i j

z

= −
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









                      (11)

Substituting Eqs. (9), (10) and (11) into Eq. (8) 
yields

S f C S fn n n
G

D
T

R( ) ( )= ρ 2 2φφ φφL  ,         ( n n Z≥ ∈1, )
                    (12)

where LR is defined as the location correlation matrix; 
the element of which is expressed as follows

L i j z z z zi jR ( , ) ( , ) ( ) ( )= ρ κ κi j                   (13)

From Eq.(12), the higher mode GFS expression can 
be obtained and expressed as  
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where Θn is defined as the generalized force spectral 
mode coefficient; S f1

G ( )  refers to the fundamental 
mode GFS; A, B and σ1 denote the contour area, 
bottom-width of the transmission in the direction of 
approach flow, and root mean square (RMS) of the 
fundamental mode generalized force, respectively; 
and a, b and CM are the fitting parameters, which 
are, respectively, 14.6, 113.5 and 0.088 (Zou, 
2006). Equation (14) shows that Θn establishes the 
constitutive relationship between S fn

G ( )and S f1
G ( ) , 

which conforms to the physical meaning. Compared 
with the analytical model in the form of Eq.(17), Eq.(14) 
is more practical and easier to adopt by researchers and/
or practicing civil engineers.
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in which denotes the solid area at the height, z. 

2.2  Multi-mode analytical model for displacement 
        response 

In this section, based on the fundamental mode GFS 
obtained from the wind-tunnel and the higer mode GFS 
deduced in section 2.1, a practical formula to evaluate 
the along-wind displacement response of a structure is 
developed.

According to the modal superposition method 
(Chopra, 2000), the displacement of a structure at 
different heights can be given by 

y z t z q tn n
n

N

( , ) ( )= ( )
=
∑φ

1
                         (20)

Accordingly, based on random vibration theory, the 
transfer function can be written in the following form 
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where qn(t) is the nth modal generalized displacement 
and K Mn n n= ω2 denotes the generalized stiffness of the 
nth mode. It is apparent that the physical phenomenon 
of structural vibration subjected to the wind load may 
be viewed as a multiple-input-multiple-output random 
process. Hence, the output power spectrum for the 
displacement can be written as follows
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where Rj(k,l) (ω) is the cross-power spectral density 
of the j (k, l)th mode, which is the bilateral power 
spectrum in the strict mathematical sense and will be 
replaced by the corresponding unilateral generalized 
force spectrum S fn

G ( ) mentioned above; and γ kl  
represents the correlation coefficient between the mth 
and nth mode and is dependent on both the frequency 
ratio and damping ratio, and also on the coherence of 
the generalized force spectrum. It can be estimated as 
follows (Chen and Kareem 2005a, b; 2007):  

γ ρ ιkl kl kl=                                     (24)

in which
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in which 0 < λmn = fm/ fn <1 and Re denotes the real part of 
the corresponding complex value.

Taking into account the low damping and discrete 
natural frequencies of the lattice tower, the cross-terms 
in Eq.(23) can be neglected. Therefore, the RMS value 
for the displacement response is given by
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Phasing is adopted to transfer Eq.(27) into an 
algebra expression and full integration can be separated 
into three integrating ranges: (1) while |Hn(iω)|2 is over 
the resonant frequency range, ωn-δ/2≤ω≤ωn+δ/2, the 
co-vibration is significant and the dynamic response 
becomes prominent; (2) while ω<ωn-δ/2, the response 
may be approximately considered as quasi-static since 
|Hn(iω)|2 is a narrow-band random process and decreases 
rapidly because of the low damping values (Yu, 2006; 
Zhang, 2006); and (3) while ω>ωn+δ/2, Rn (ω) and 
|Hn(iω)|2 exhibit a sharp decreasing tendency to approach 
zero (Yu, 2006), so the influence of this integral range can 
be neglected on σy(z). Then, |Hn(iω)|2 and |Hn(iω)|2Rn (ω) 
can approximately be estimated as 
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Introducing the dynamic magnification factor 
β ξ=1 2/ n under resonance conditions and substituting 
Eqs.(28), (29) and (30) into Eq.(27) yields 
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Here, the repetitive calculation of static response in 
the resonant frequency range is avoided, which was 
not considered in some previous research, for instance 
Yu (2006). However, the form of Eq.(31) is still not 
convenient for use in practice. Hence, it is valuable 
to find the specific algebraic expressions of δ and 
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and Rn (ω) is approximately regarded as white noise 
within the range of δ (Zhou and Gu, 2006), in which 
Rn (ω) is a constant and expressed by Rconst. Then, δ is 
evaluated as
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The term Θn represents the constitutive relationship 
between Rn ( )ω ωd
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+∞

∫ and σ1
2 . Substituting Eqs.(32) 

and (33) into Eq.(31) obtains the following algebraic 
expressions:

σ σ
φ
ω

ξ ω

ξ
y

n n

n nn

N
n n

n

z
z

M
a B V

( )
( ) ( / ) .

=
( )

+
−

+=
∑1

2

2 4
1

2 1 05

1
1 2 2

8 1

Θ π π H

bb B Vn(( / )
.

ω 2 2 1 5
π H 















  
(34)

y z zy( ) ( )=µσ                               (35)

where µ  is the peak factor and is obtained as suggested 
by Kareem and Zhou (2003).   

The advantage of this model is that it includes the 
contributions of the higher vibration modes and the 
algebraic expression allows it to be directly adopted by 
practitioners.

2.3   Conventional method

Generally, structural internal forces are needed in 
engineering design. For this purpose, current design 
practice often requires dynamic wind loads to be 
represented in terms of ESWLs, which is called the 
conventional method herein. In this method, the internal 
force solution is generally implemented in two steps as 
follows: 

(a) Calculate the ESWLs
The wind load and the associated ESWLs are 

represented in terms of the contributions of vibration 
modes.  If only the first mode is considered, the ESWLs 
(concentrated forces acting on the structural nodes) are 
given by (Zou, 2006; Zhang, 2006). 

P1 1
2

1 1
2

1( )z m z y z m z zy= ( ) ( ){ } = ( ) ( ){ }ω µω σ        (36)

where P1(z) and m (z) denote the vector of the ESWLs 
and the nodal mass at height, z, respectively. 

(b) Calculate the internal forces
As is well known, the finite element method (FEM) 

is widely used to calculate the internal forces of a 
structure.  To show the advantages of the ALD method, 
a brief description of this step is given here. K is the 
structural stiffness matrix, K 

e is the element stiffness 
matrix in a local coordinate system, d is the global 
nodal displacement vector, d 

e is the element nodal 
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displacement vector in the local coordinates, where 
d needs to be transformed from the global coordinate 
system, and F 

e and f e are the rod-end internal force 
vector and fixed end reaction vector, respectively.

Solve for d using

Kd P= ( )1 z                                 (37)

Calculate F 
e from

F K d f K de e e e e e= + =                  (38)

Note that the reason f e =0 in Eq.(38) is that the ESWLs 
are concentrated loads acting on the structural nodes 
as mentioned above. Additionally, note that it is d 

e 
instead of P1(z) that becomes the necessary condition to 
calculate F 

e.

2.4   ALD method and numerical verification

It is apparent that Eq.(36) does not need to be solved 
for d to estimate the ESWLs since d is in essence, simply 

y(z) obtained from Eq.(35). Furthermore, the structural 
internal forces should be deterministic if the structural 
nodal displacements are known. Therefore, F e can be 
obtained directly by using Eq.(38), and Eqs.(36) and (37) 
are not needed.  This process doesnot require calculating 
the ESWLs for internal force evaluation and is called the 
ALD method. The ALD method has been shown to be 
simple and more convenient to use in practice.  

From the analysis above, a flow chart (Fig.1) for 
computing the response of transmission towers is given 
below. The framework includes four parts: fundamental 
mode GFS, higher mode GFS, displacement response, 
and internal force calculation.

According to Fig.1, the transmission tower shown 
in Fig.2 is used to verify the feasibility and accuracy of 
the ALD method. The relevant parameters, calculation 
results and deformation sketches are given in Fig.3, 
Tables 1 and 2, respectively. Two nodes and two frames 
in the tower are investigated and 40 vector components 
are considered in the Ф1.      

Table 2 shows that the two methods show good 
agreement. Their deviation may come from adopting the 
conventional method calculation, m(z), in Eq.(37). 

Fig. 1   Flowchart for calculating the responses of transmission towers

Preprocessing and parameters preparation

Framework

Foundamental 
mode GFS

Eq. (15)

Higher mode 
GFS

Eq. (14)

Displacement response

Eqs. (34) and (35)

Internal force

by ALD method

Postprocessing

Table 1   General characteristics of the model

H(m) VH(m/s) A(m2) By(m) ρ(Kg/m3) E(GPa) ρs(kg/m3) α R ξ1

43 25 90.1 3.7 1.29 200 7.85×103 0.16 5% 2%

          Note: E: Young’s modulus; ρs: the density of steel

Table 2   Comparison of computational results between the conventional method and ALD method

Method

RMS value of response under the fluctuating wind

                        Joint displacement  (m)                                             Frame axial force (N)

                     1                                       2                                     1                                         2

ALD (a) 0.174[using eq.(34)] 0.130[using eq.(34)] 107.2 -203.5

Conventional (b) 0.182 0.136 100.3 -210.7

(a-b)/a -4.5% -4.6% 6.4% 3.5%



92                                              EARTHQUAKE ENGINEERING AND ENGINEERING VIBRATION                                               Vol.8

3   Concluding remarks 

A new framework has been presented to evaluate the 
along-wind-induced dynamic responses of transmission 
towers, in which a practical higher mode generalized 
force spectrum (GFS) model is deduced on the basis of 
a fundamental mode generalized force spectrum (GFS) 
obtained from a wind tunnel. The framework also adopts 
the height-independent fluctuating wind power spectral 
density and Shiotami-Type spatial coherence function. 

In addition, based on random vibration theory, a 
practical algebraic formula is derived which includes 
higher mode contributions. The formula can be used to 
evaluate the RMS value of the displacement response 
through proper simplification. 

Finally, a method called the ALD method is presented 

           (a) Model (H=43 m)                                  (b) Investigation points                                (c) First mode shape (T1=0.45 s )  

Fig. 2   Transmission tower model & mode shape

   (a) ALD method                                                     (b) Conventional method

Fig. 3   Transmission tower deformation

to calculate the internal force of a transmission tower by 
directly using the displacement response obtained from 
Eq.(34). 

It is shown that the results obtained by the ALD 
method show good agreement with the conventional 
method. The advantage of this approach is that it is 
rational and avoids calculating the ESWLs, which 
makes it easier to use in engineering practice. 
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