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Abstract:  

A practical calculating model, based on the 
fundamental mode generalized force spectrum 
(FMGFS) obtained in a wind tunnel test and presented 
practical higher mode generalized force spectrum 
(HMGFS) model in along-wind direction of lattice 
tower, is further deduced and proposed to calculate 
along-wind displacement response of lattice tower. In 
the proposed model, the contributions of higher 
vibration modes can be taken into account. As for 
lattice tower, it is of value to popularize the proposed 
model and the approach that can provide valuable 
reference for code. 

Keywords: Along-wind-induced dynamic responses; 
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1. Introduction  

Lattice high-rise structure such as transmission 
tower, with the characters of lightweight, highness, 
flexibility and low damping, is sensitive to wind 
load[1]. It is a necessary condition to accurately 
calculate the wind load before further conducting the 
structural design. The wind load on structure can be 
qualified through the multiple-point synchronous 
scanning of pressures (MPSSP) on a structure model 
surface in a wind tunnel, or by a high frequency fore 
balance (HFFB) measure. Different from the ordinary 
building, however, the wind load on the transmission 
tower is difficult to, even can not, be measured in 
detail using MPSSP measures due to its high 
hollowness rate, while the HFFB measure is usually 
used to offer an estimate of the generalized force of 
the fundamental mode and the FMGFS. Then, 

according to the random vibration theory, the variance 
of the responses only including the first mode can be 
further deduced. However, higher modes may have 
noticeable contributions to the responses, especially 
for those slender structures like transmission tower. A 
systematic work to evaluate along-wind responses of 
latticed tower was studied by Holmes[2,3,4]. In order 
to have better understanding of transmission 
tower-lines system to wind excitation, a novel 
approach that for the wind tunnel aeroelastic 
modelling of conductors was introduced in detail by 
Loredo-Souza[5,6]. More discussions concerning with 
the generalized force spectrum of transmission tower 
have not been addressed. The studies in which three 
semi-rid tower models were made and HFFB 
measures were used in TJ-1 boundary layer wind 
tunnel in Tongji University firstly obtained the 
FMGFS of transmission tower, and then the HMGFS 
in an analytic form was also discussed [7]. In order to 
obtain structural internal force, like the conventional 
processing approach, the ESWLs only including 
fundamental modal contribution of transmission tower 
was also presented [8]. In this paper, for the purpose 
of practical engineering applications, a practical 
numerical HMGFS model is firstly presented on the 
basis of the fundamental mode generalized force 
spectrum (FMGFS) obtained from a wind tunnel 
model experiment and adopting the 
height-independent fluctuating wind power spectral 
density and Shiotami-Type spatial coherence function. 
Then, a practical calculating model for the 
displacement response is further deduced. In the 
formula, the contributions of higher modes can be 
included and the conversion relations between the 
unilateral and bilateral power spectral densities are 
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also taken into account in the derivation. er structural 
design.  

2.  Practical HMGFS model 

For a structural system with rigid-bases, its 
dynamic equilibrium equations under the wind load 
action can be written as  

( ) ( ) ( ) ( , )t t t z t+ + =My Cy Ky F       (1) 

where M, C and K denote the mass, damping and 
stiffness matrices, y(t), ý (t) and ÿ (t) mean the 
displacement, velocity and acceleration vectors, 
respectively, F(z, t) implies the nodal force vector. 
Then, the typical uncoupled modal equation for the 
structural system is of the following form:  

2( ) 2 ( ) ( ) ( , )G
n n n n n n n nM q t q t q t F z tξ ω ω⎡ ⎤+ + =⎣ ⎦   (2)                      

in which                       

T
n n nM =Φ MΦ  

( , ) ( , )G T
n nF z t z t=Φ F   

where Mn is the generalized mass. Φn and qn(t) are the 
modal and generalized displacement vectors, ξn and ωn 
represent the damping ratio and circular frequency, 
respectively, Fn(z, t) means the generalized force, here 
the subscript (n) refers to the nth mode. According to 
the theory of quasi-stability, the nth modal generalized 
force is expressed as follows 

{ }21( , ) ( ) ( ) ( ) ( , )
2

G T
n D nF z t C B z d z R z U z tρ= Φ  (3)

where ρ denotes the air density, Cd means the air
 damping coefficient, B(z) denotes the calculating 
width and d(z) implies the calculation height at al
titude, z, and R(z) refers to the ratio between act

ual 
area of unit height and contour area and 

2 2 2( , ) ( ) 2 ( ) ( ) ( )U z t U z U z U z U z= + +     (4)  

where Ū (z) and Ũ (z) are the mean wind speed and 
the  
fluctuating  wind speed. Here, the effect of Ū (z) is 
equivalent to static force. Actually, compared with Ū 
(z)2 and 2Ū (z)Ũ (z), Ũ (z)2 is very small and can be 
neglected[9]. Thus, substituting Eq. (4) into Eq. (3)  

yields 

          { }( , ) ( , )G T
n D nF z t C z tρ= ΓΦ        (5)       

in which  

( , ) ( ) ( ) ( ) ( ) ( , ) ( ) ( , )z t B z d z R z U z U z t z U z tκΓ = =

                    (6) 
and                             

( ) ( ) ( ) ( ) ( ) ( , )z B z d z R z U z U z tκ =     (7)            

Strictly speaking, it is more reasonable that 
fluctuating wind speed spectrum density should vary 
with the height, z. In accordance with the criterion of 
engineering applications, however, the influence of z 
on the structural responses is very small and can be 
neglected [10]. Hence, according to the random 
vibration theory and matrix theory, the power 
spectrum of the nth generalized force can be 
expressed as 

 2 2( )G T
n D n nS f Cρ= Φ ΛΦ            (8)           

where 
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                   (9)  

i j( , , ) ( , , ) ( ) ( )i j i jz z f z z f z zρ κ κΔ =    (10)           

where S(f) represets the fluctuating wind speed 
spectrum density which is independent of z and ρ(zi, zj, 
f) is the correlation coefficient between zi and zj. In 
theory, the correlation coefficient is a multivariant 
function, not only related to the position, but also the 
frequency. Here, the Eq.(11) suggested by Shiotami is 
adopted because of the following reasons: Eq.(11) was 
established on the basis of test and is applicable to 
high-rise structures[10], and it is quite convenient to 
be used due to that it has nothing to do with 
frequency: 

     ( , ) exp i j
i j

z

z z
z z

L
ρ

⎛ ⎞−
⎜ ⎟= −
⎜ ⎟
⎝ ⎠

, 60zL =  (11) 
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Substituting Eqs(9), (10) and (11) into Eq. (8) gives         

2 2( ) ( )G T
n D n R nS f C S fρ= φ L φ , ( 1,n n Z≥ ∈ )  (12)                     

where LR is defined as the location correlation matrix, 
the element of which is expressed as follows 

i j( , ) ( , ) ( ) ( )R i jL i j z z z zρ κ κ=    (13)                          

From Eq.(12), the HMGFS expression can be obtained 
and expressed as   

1 1
1

( ) ( ) ( )
T

G G Gn R n
n nT

R n

S f S f S f= = ΘΦ L Φ
Φ L Φ

 ( 1n ≥ ) 

(14)                  
in which           

  
1.05

2
1 12 1.5

( / )( )
[1 ( / ) ]

G H

H

a fB VS f
f b fB V

σ=
+

     (15)                     

2
1 10

1 ( )
2

G
M HC V AR S f dfσ ρ

∞
= = ∫       (16)                      

where Θn is defined as the generalized force spectral 
mode coefficient, 1 ( )GS f  referes to the FMGFS, A, B 
and σ1 mean the contour area, bottom-width of 
transmission in the direction of approach flow and 
root mean square(RMS) of the fundamental mode 
generalized force, a, b and CM are the fitting 
parameters, which are respectively 14.6, 113.5 and 
0.088 in turn[7]. From Eq.(14), it can be found that 
the Θn establishes the constitutive relation between 

( )G
nS f and 1 ( )GS f , which conforms to physical 

meaning. Compared with the analytical model in 
Eq.(17), Eq.(14) is more practical and easy to be 
adopted by researchers or civil engineers. 
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1
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( , ) ( ) ( )
( ) ( )

( , )

H H

i j n nG G
n H H
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ρ
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=

Ω Ω
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                   (17) 

2
1 1 1

1 ( ) ( )
2 DC S z V zρΩ =         (18)               

2
2 2 2

1 ( ) ( )
2 DC S z V zρΩ =         (19)                                      

in which ( )S z denotes the solid area at the height, z.  

3. Multi-modal model for displacement response  

It is the purpose of this section, based on the 
FMGFS obtained from the wind-tunnel and the 
HMGFS deduced in section 2.1, to give a practical 
calculation formula to evaluate along-wind 
displacement response of the structure. 

According to modal superposition method[11], the 
displacements of lattice tower at different heights can 
be given by  

( )
1

( , ) ( )
N

n n
n

y z t z q tφ
=

=∑           (20)           

Accordingly, based on random vibration theory, the 
transfer function can be written in the following form  

( )
1

( , ) ( )
N

y n n
n

H z i z H iω φ ω
=

=∑       (21)           

{ } 12( ) 1 2 ( / ) ( / )n n n nH i K iω ξ ω ω ω ω
−

⎡ ⎤= + −⎣ ⎦ (22)           

where qn(t) is the nth modal generalized displacement 
and 2

n n nK M ω=  denotes the generalized rigidity of the 
nth mode. It is apparent that the physical phenomenon 
of structural vibration subjected to the wind load may 
be looked upon as a multiple-input-multiple-output 
random process. Hence, the output power spectrum 
for the displacement can be written as follows 

( ) ( ) ( ) ( )22

1

,
N

y n n n
n

S z z H i Rω φ ω ω
=

=∑

( ) ( ) ( ) ( ) ( ) ( )
1 1

N N

k l k l kl k l
k l

k l

z z H i H i R Rφ φ ω ω γ ω ω
= =

≠

+∑∑

(23) 
where Rj(k,l) (ω) is the cross-power spectral density of 
the j(k,l)th mode, which is the bilateral power 
spectrum in the strict mathematical sense and will be 
replaced by the corresponding unilateral generalized 
force spectrum ( )G

nS f mentioned above, 

klγ represents the correlation coefficient between the 
mth and nth mode and not only dependent on the 
frequency ratio and damping ratio, but also the 
coherence of generalized force spectrum，and can be 
estimated as follows[12,13,14]:   

kl kl klγ ρ ι=            (24)            
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in which 

( )
( ) ( ) ( )2

3/ 2

22 2 2 2

8

1 4 1 4
l k kl l l kl

kl

kl k l kl kl k l kl

ξ ξ λ ξ ξ λ
ρ

λ ξ ξ λ λ ξ ξ λ

+
=

− + + + +

                   (25) 

( ) ( ) ( )Re /
m lkl kl k k orR R R ω ω ωι ω ω ω == ⎡ ⎤⎣ ⎦   

 (26)                    
where 0<λmn=fm/ fn <1 and Re denotes the real part of 
the corresponding complex value. 

Taking into account small damping and discrete 
natural frequencies of the lattice tower, the 
cross-terms in Eq.(23) can be neglected. Then, the 
root-mean-square (RMS) value for the displacement 
response is given by 

( ) 22

1

( ) S ( , )

( ) ( )

y y

N

n n n
n

z z d

z H i R d

σ ω ω

φ ω ω ω

+∞

−∞

+∞

−∞
=

=

=

∫

∑ ∫
 (27) 

( ) ( )( ) ( )
122 2 22 21 4n n n nH i Kω ω ω ξ ω ω

−
⎧ ⎫⎡ ⎤= − +⎨ ⎬⎢ ⎥⎣ ⎦⎩ ⎭

 (28)                        
Phasing is adopted to transfer Eq.(27) into the 

algebra expression and the full integration can be 
separated into three integrating ranges: (1) while 
|Hn(iω)|2 is over the resonant frequency range, 
ωn-δ/2≤ω≤ωn+δ/2, the covibration is significant and 
the dynamic response becomes prominent; (2) while 
ω<ωn-δ/2, the response may be approximately 
considered as the quasi-static due to that |Hn(iω)|2 is a 
narrow-band random process and appears fast 
decrease because of the low damping values[8,10]; (3) 
while ω>ωn+δ/2, Rn (ω) and |Hn(iω)|2 exhibit a sharp 
decreasing tendency to approach zero[8], so it is 
reasonable to neglect the influence of this integral 
range on σy(z). Then, |Hn(iω)|2 and |Hn(iω)|2Rn (ω) can 
be approximately estimated as  

2''

2 2 2 4 2

2 2 4

( )

1 (4 ) 1 (4 ), [ /2, /2]

1 1 ( ), 0, /2

n

n n n n n n n

n n n n

H i

K M

K M

ω

ξ ω ξ ω ω δ ω δ
ω ω ω δ

≅

⎧ = ∈ − +⎪
⎨

= ∈ −⎪⎩ （ ）

        (29)     
2'' ( ) R ( ) 0, / 2,n nH iω ω ω ω δ≅ ∈ + + ∞（ ）  (30)          

Substituting Eqs.(28), (29) and (30) into Eq.(27) 
and considering dynamic magnification factor 

1/ 2 nβ ξ= under resonance condition yields  

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

2
2 22 ' ''

1
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1( ) 1

1 2
4

N
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N
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z
R d R

M
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β

ξφ
ω ω ω δ

ω ξ

+∞

−∞
=

+∞

−∞
=

⎡ ⎤⎛ ⎞= + −⎢ ⎥⎜ ⎟
⎝ ⎠⎢ ⎥⎣ ⎦

⎡ ⎤−
= +⎢ ⎥

⎢ ⎥⎣ ⎦

∑ ∫

∑ ∫

    (31)    
Here, the repetitive calculation of static response in 
the range of resonant frequency is avoided, which was 
not be considered in the literature [8]. However, in 
practice, the form of Eq.(31) is still not convenient to 
be adopted directly by researchers or engineers. To be 
practical, it is valuable to further give the specific 

algebraic expressions of δ  and ( )nR dω ω
+∞

−∞∫ . 

(1) determine δ: |Hn(iω)|2 is a narrow-band process 
and Rn (ω) is approximately regarded as a white noise 
within the range of δ[15], in which Rn (ω) is 
constantly equal to Rconst. Then, δ is evaluated as 

2 2

2 2 4 2

( ) ( )
2 2

1/(4 )( )
n const n

n n
n n nn const

H i R d H i d

MH i R

ω ω ω ω
δ πξ ω

ω ξω

+∞ +∞

−∞ −∞= = =
⎡ ⎤⎣ ⎦

∫ ∫

               (32)   

n nδ πξ ω⇒ =         (33)           

(2) determine ( )nR dω ω
+∞

−∞∫ : Consider Rn (ω) being 

an even function and substituting Eq.(14) into it gives  

1
0 0

2
1 10

( )R ( ) 2 R ( ) 2 2
4

( )

n
n n

n n

S fd d df

S f df

ω ω ω ω π
π

σ

+∞ ∞ +∞

−∞

+∞

Θ= =

= Θ = Θ

∫ ∫ ∫

∫
(34)           

It is evident that Θn has established the constitutive 

relation between ( )nR dω ω
+∞

−∞∫  and 2
1σ . Substitutions of 

Eqs.(33) and (34) into eq.(31) finally gives the 
following algebraic expressions: 

293292



( )2 2 1.05

1 1.52 4 21

(1 2 ) ( / 2 )( ) 1
8 1 (( / 2 )

N
n n n n H

y
n n n n n H

z a B Vz
M b B V

φ π ξ ω πσ σ
ω ξ ω π=

⎡ ⎤Θ −⎢ ⎥= +
⎢ ⎥⎡ ⎤+⎣ ⎦⎣ ⎦

∑

                  (35) 

( )= ( )yy z zμσ            (36)                  

where μ  is the peak factor and can be obtained 
according to the suggestions by Kareem and 
Zhou[16].    

The advantage of this model is that it not only 
includes the contributions of higher vibration modes 
but also can be directly adopted by researchers or 
engineers because of its algebraic expression. 

3. Concluding remarks  

.According to the analysis above, some conclusions 
are summarized below:      

(1) A practical higher mode generalized force 
spectrum (HMGFS) model is deduced on the basis of 
fundamental mode generalized force spectrum 
(FMGFS) obtained from a wind tunnel and adopting 
the height-independent fluctuating wind power 
spectral density and Shiotami-Type spatial coherence 
function.  

(2) Based on the random vibration theory, a 
practical algebraic formula, in which the higher mode 
contributions can be included, for evaluating the RMS 
value of the displacement response is further derived 
through proper simplification.     
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