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Abstract A long-span structure is a common type of public building, but its seismic char-
acteristics are distinct from other types of buildings because of its long span. Calculation
models considering multi-point excitation are required in the seismic analysis of long-span
structures. However, correlative studies have already clearly shown that important but often
overlooked errors exist in previously developed multi-point excitation calculation models.
The process of establishing displacement and acceleration models for multi-point seismic
analysis is reviewed. Error sources and criteria of the two models are explained using rigor-
ous theoretical derivation. Error characteristics and distributions in multiple structural types,
such as ordinary structures without dampers and damper-installed structures with concen-
trated damping, are also described. Modifications for multi-point excitation displacement
and acceleration models, for time history and stochastic analysis, respectively, are proposed,
and these modified models are used to assess errors in the conventional models. Numeri-
cal examples are solved using conventional displacement and acceleration models and two
corresponding modified models. The properties, components and distribution of errors in
the conventional models are demonstrated. The findings presented in this paper can provide
a sound basis for the practical application of multi-point excitation calculation models in
seismic analysis.
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1 Introduction

Social progress and economic development in recent years have stimulated the growth of
the public-sector construction industry around the world and especially in China. Numerous
buildings with complex structural styles have been constructed in China, such as the “Bird’s
Nest” National Stadium, the World Expo Theme Pavilion in Shanghai, high-speed railway
stations and others. All of these large structures possess long-span characteristics and often are
landmarks of a city. Long-span structures play a role in transportation structures. Urbanization
and urban population growth have increased transportation demand and vehicle traffic. A large
number of interurban elevated bridges are to be constructed to meet these needs. High-speed
railway lines, a large proportion of which are often bridges, are being built as well. Because
of their important functions and symbolic significance, seismic analysis and design of long-
span structures and bridges have attracted widespread attention from scholars. The seismic
response characteristics of long-span structures are clearly distinct from ordinary structures,
especially when the structural span’s wavelength and the ground’s wavelength are the same
order of magnitude. Differences between multiple earthquake excitations applied to supports
should be considered, mainly in connection with the following three important factors: wave
passage effects, local site effects and site coherence effects. In general, calculated results
ignoring multi-point excitation characteristics cannot accurately describe actual structural
response.

Seismic analysis of long-span structures under multi-point excitation has become a focus
of current research. Two calculation models are usually adopted, the displacement model and
the acceleration model. The displacement model takes the displacement of the ground in an
earthquake as its input and uses the absolute structural displacement as a key parameter. This
model has a wide range of application and is suitable for both linear and nonlinear analysis.
Using the displacement model, Yamamura and Tanaka (1990), Hao (1991), Hao and Xiao
(1995), Su et al. (2006) have carried out a great deal of numerical work on time history analysis
of engineering structures. The acceleration model takes the acceleration of the ground in
an earthquake as its input. This model was first proposed by Clough and Penzien (1975)
based on rigorous theoretical derivation. It is similar in form to the model that is established
under uniform seismic excitation. The acceleration model has good accuracy but is only
suitable for linear analysis because of the superposition principle adopted in its derivation.
However, this point is often overlooked in application, and applying the acceleration model to
nonlinear analysis of long-span structures leads to incorrect results and unreasonable designs.
Acceleration response spectrum methods suitable for seismic analysis of long-span structures
have been derived by Kiureghian and Ansgar (1992) and Berrah and Kausel (1993). Given that
both the displacement model and the acceleration model have certain inherent assumptions
associated with them, they possess some theoretical defects and are not applicable for all
conditions. Considering that few scholars have studied the error-inducing aspects of these
models, we identified problem of the displacement model in ordinary structures with Rayleigh
damping and showed that the problem can be addressed by the use of a massless rigid
element (MRE) in the SAP2000 software (Liu et al. 2010). However, in the previous study,
only ordinary structures with Rayleigh damping were considered. As the styles of long-
span structures are usually diverse and conventional designs cannot satisfy practical seismic
needs, control techniques, such as isolation, dampers and so on, are often introduced in
design. Therefore, long-span structures with isolation or dampers that possess concentrated
damping characteristics appear frequently in engineering. Considering that the reliability and
error potential of conventional seismic calculation models have not been addressed before,
the study described in this paper is considered valuable and timely.

123

Author's personal copy



Bull Earthquake Eng

Based on research previously conducted by we, two calculation models (the displacement
model and the acceleration model) for seismic analysis of long-span structures subjected to
multi-point excitation are systematically studied, focusing in particular on their applicability
and error potential for ordinary structures and damper-installed structures that possess con-
centrated damping characteristics. First, sources of error and situations in which they may
arise are analyzed for the two models by rigorous theoretical derivation. It is demonstrated
that the error problem is mainly the result of a non-proportional damping distribution. Second,
modifications to the displacement and acceleration models, for time history and stochastic
analysis, respectively, are presented. Third, numerical analyses are presented to demonstrate
the error magnitudes and distributions of the two models for different types of structures. The
effectiveness of the proposed model modifications is also verified. The results of the study
described in this paper provide important guidance for the rational use and modification of
calculation models for seismic analysis of long-span structures under multi-point excitation
in earthquakes.

2 Calculation models for seismic analysis under multi-point excitation

As part of this study of the errors in calculation models for seismic analysis of long-span
structures under multi-point excitation, rigorous theoretical derivations of the displacement
model and the acceleration model are conducted to clarify their basic assumptions and cor-
responding approximations adopted in the derivation process.

2.1 Displacement model

In an earthquake, ground motion will cause motion in a structure, and due to its own inertia,
the structure will experience deformation. Figure 2 gives a diagrammatic sketch of long-span
structure with multiple supports on ground. As shown in Fig. 2, all of the degrees of freedom
(DOFs) of the structural system can be divided into the following two parts: non-constrained
DOFs (referred to as non-constrained parts or upper parts) and constrained DOFs (referred
to as constrained parts or lower parts), which can be . Taking absolute displacements as the
key parameters, the dynamic equilibrium equation of the structural system as a whole can be
established as follows:[

Ms Msb

Mbs Mb

]{
Üs

Üb

}
+

[
Cs Csb

Cbs Cb

]{
U̇s

U̇b

}
+

[
Ks Ksb

Kbs Kb

] {
Us

Ub

}
=

{
0
Rb

}
(1)

in which Ms, Cs and Ks are respectively mass, damping and stiffness matrices of the
upper parts of the structure. Mb, Cb and Kb are matrices of the lower parts of the structure.
Mbs = MT

sb, Cbs = CT
sb and Kbs = K T

sb correspond to coupling mass, damping and stiffness
matrices between the upper and lower parts. Rb is a force acting on supports provided by the
foundation. Us , U̇s and Üs are absolute displacement, velocity and acceleration vectors of
the upper parts of the structure. Similarly, Ub, U̇b and Üb correspond to absolute displace-
ment, velocity and acceleration of the supports. Because supports will move together with
the ground in an earthquake, these vectors actually describe ground motion. In general, the
dynamic equilibrium equation for a structure in an earthquake is established in Eq. (1) by
absolute movement, which is correct in theory and has been mentioned in several references
(Wilson 2004). What needs to be explained is that stiffness and damping force are both
described by absolute displacement, which apparently is in contrast with its usual expression
by relative displacement. In view of the characteristics of the stiffness matrix, equivalent
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increases of all displacements will not influence the stiffness force. This point also applies
to damping characteristics that come from structural stiffness or dampers. Meanwhile, mass
damping, as a part of the damping matrix, is proportional to the mass matrix, which only
possesses diagonal elements, so force provided by mass damping and produced by absolute
displacement in Eq. (1) is in theory different from that produced by relative displacement.
This means that different results will be obtained depending on whether absolute or rela-
tive displacement is adopted to establish a calculation model. However, the force provided
by mass damping is usually small and has little effect on the calculated results and the
damping mechanism in an actual project is complex and hard to confirm. Therefore, Eq. (1)
approximately equals the equation given by relative displacement. According to the above
description, the dynamic equilibrium equation of upper parts of the structure can be given
by Eq. (2):

MsÜs + CsU̇s + KsUs = −MsbÜb − CsbU̇b − KsbUb (2)

If lumped mass is adopted here, Msb = 0, the above equation can be rewritten as:

MsÜs + CsU̇s + KsUs = −CsbU̇b − KsbUb (3)

The usual practice is to ignore the damping force −CsbU̇b because the magnitude of the
damping force is difficult to define precisely. This practice is reasonable for ordinary structures
with the lower parts not excessively elementally divided. The following equation can be given:

MsÜs + CsU̇s + KsUs = −KsbUb (4)

in which Ub represents absolute displacement of the ground in an earthquake. −KsbUb is
the concentrated force applied on the upper parts of the structure by supports. Equation (4)
is known as the displacement model and it requires absolute displacement time histories
as input. The displacement model is a widely applicable model that is suitable not only
for uniform excitation but also for multi-point non-uniform excitation. Moreover, as there
are no assumptions adopted in its derivation, this model can be used for both linear and
nonlinear analysis. However, as described in the derivation, Eq. (4) is obtained by ignoring
the damping force −CsbU̇b and this approximation may lead to some problems in seismic
analysis of long-span structures. In general, the problem can be described as follows: when
the lower parts of an ordinary structure are excessively elementally divided, the stiffness of
structural elements near supports is great, and thus, the displacement model will produce
erroneous results. This problem was identified by we in a previous study and a solution
developed using the SAP2000 software was proposed and numerically verified (Liu et al.
2010). Thus, Eq. (3) can be considered an accurate calculation model for seismic analysis of
long-span structures, and Eq. (4) (the displacement model) is an approximate model ignoring
parts of the damping force, which may cause obvious errors in some situations. This result
is confirmed by numerical analyses later in this paper.

2.2 Acceleration model

The acceleration model is established by transformation of Eq. (3) and requires acceleration
time histories of ground motion in an earthquake. The usual practice is to divide absolute
displacements of the structure into two parts:

Us = Ud
s + U p

s = Ud
s + Γ sbUb (5)

in which Ud
s is usually referred to as the dynamic displacement and U p

s as the quasi-static dis-
placement. Γ sb is the transformation matrix. Ub is the ground displacement in an earthquake.
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MatrixΓ sb can be set to an arbitrary value so that different combinations of structural response
can be constructed to correspond to different solution strategies (Su et al. 2006). However,
Γ sb is usually given by eliminating the inertia force and damping force in Eq. (4), which
yields the following expression:

KsΓ sbUb = −KsbUb ⇒ Γ sb = −K−1
s Ksb (6)

Substituting Eqs. (5) and (6) into Eq. (3), it can be rewritten as:

MsÜ
d
s + CsU̇

d
s + KsUd

s = −MsΓ sbÜb − (Csb + CsΓ sb) U̇b − (Ksb + KsΓ sb) Ub (7)

Obviously, Ksb + KsΓ sb = Ksb − KsK−1
s Ksb = 0, so the third term to the right of the equal

sign can be eliminated. Moreover, if only stiffness damping is assumed for the whole structure,
the second term can also be eliminated: − (Csb + CsΓ sb) U̇b = −β (Ksb + KsΓ sb) U̇b = 0.

If the damping characteristics of the structure include not only stiffness damping but also
mass damping, the damping term − (Csb + CsΓ sb) U̇b actually does not equal zero exactly.
Nonetheless, this term can also be ignored in calculation because − (Csb + CsΓ sb) U̇b in
an ordinary structure is usually small and because − (Csb + CsΓ sb) U̇b is hard to define
accurately in practical applications. Thus, the following expression is given:

MsÜ
d
s + CsU̇

d
s + KsUd

s = MsK−1
s KsbÜb (8)

in which Γ sb = −K−1
s Ksb. Equation (8) is usually referred to as the acceleration model for

seismic analysis of long-span structures. The acceleration model cannot be used in nonlinear
analysis because its derivation depends on adoption of the superposition principle. Particu-
larly when the ground motion is uniform earthquake excitation, this means that Üb = Eüg ,
E = [1, 1, . . . , 1]T , in which üg is ground acceleration. Γ sb = I is usually adopted instead
of Γ sb = −K−1

s Ksb. An acceleration model applicable for uniform earthquake excitation
can be written as:

MsÜ
d
s + CsU̇

d
s + KsUd

s = −MsEüg (9)

This is the calculation model used most often in seismic analysis of structures. It is established
based only on relative displacement. As shown in the above derivation, the acceleration
model of Eq. (8) is an approximate model, similar to the displacement model, because it
ignores the damping term − (Csb + CsΓ sb) U̇b. The accuracy of this model is limited by
this approximation. The damping term is small enough to be neglected in seismic response
calculation for ordinary structures. However, in structures possessing concentrated damping
characteristics (non-proportional damping), such as isolated structures and damper-installed
structures, this ignored damping term will lead to obvious errors in calculation.

Because both of the displacement model and acceleration model are derived by relying
on approximations that are not valid for all situations, the two models have some potential
for error and are limited in their respective scopes of application. The research work in this
paper is conducted to investigate the two models’ error sources and situations in which errors
may occur and to propose corresponding modifications to achieve satisfactory calculation
precision.

3 Error in the calculation model

When dealing with long-span structures under multi-point earthquake excitation, the error
magnitude is usually determined by the ignored damping term if the model used adopts

123

Author's personal copy



Bull Earthquake Eng

the approximation of ignoring damping. This point applies to both the displacement model
and the acceleration model, so the error problem actually can be considered the damping
problem. The following section examines the damping problem in these two models and the
corresponding errors that result when are applied to several different types of structures. To
analyze the error situations of calculation models accurately, all structural modes should be
considered and the damping matrix should be established using the same strategy. These
steps are taken to avoid the influence of irrelevant factors in the study.

3.1 Displacement model

Regardless of what assumption is made concerning damping in the structure, the ignored
damping term −CsbU̇b is always a source of error in the displacement model. For example,
when Rayleigh damping and lumped mass are adopted, the following expression can be
given:

− CsbU̇b = − (αMsb + βKsb) U̇b = −βKsbU̇b (10)

Considering the way in which matrix Ksbis constructed, it can be observed that the ignored
damping force is directly proportional to the stiffness of bottom elements connected to the
supports. However, the stiffness force in the displacement model increases with Ksb, so the
error magnitude of the displacement model is difficult to evaluate using Eq. (10) only. To
evaluate the error of the displacement model, the following expression can be obtained from
Eqs. (4) and (5):

MsÜ
d
s + CsU̇

d
s + KsUd

s = −MsΓ sbÜb − CsΓ sbU̇b − (Ksb + KsΓ sb) Ub (11a)

Us = Ud
s + U p

s = Ud
s + Γ sbUb = Ud

s − KsK−1
s Ub (11b)

Because of transformation equivalence, results obtained from Eq. (11) equal those from the
displacement model and Eq. (11a) can be used to calculate the structural response Ud

s . Given
that Ksb + KsΓ sb = Ksb − KsK−1

s Ksb = 0, Eq. (11) can be converted to:

MsÜ
d
s + CsU̇

d
s + KsUd

s = −MsΓ sbÜb − CsΓ sbU̇b (12a)

Us = Ud
s + U p

s = Ud
s + Γ sbUb = Ud

s − KsK−1
s Ub (12b)

Equation (12) is derived from the displacement model and is obviously similar to the accel-
eration model, except that Eq. (12a) contains an additional damping term −CsΓ sbU̇b. Here,
the acceleration model can be considered as an accurate model for an ordinary structure, as
explained subsequently. Equation (12) is used to evaluate the error of the displacement model.
If Rayleigh damping is adopted for an ordinary structure, the damping term −CsΓ sbU̇b can
be expressed as

− CsΓ sbU̇b = − (αMs + βKs)Γ sbU̇b = −αMsΓ sbU̇b − βKsbU̇b (13)

in which α and β are respectively proportional coefficients of mass damping and stiffness
damping that can be calculated by modal frequencies and corresponding damping ratios.
Substituting Eq. (13) into Eq. (12a):

MsÜ
d
s + CsU̇

d
s + KsUd

s = −MsΓ sbÜb − αMsΓ sbU̇b − βKsbU̇b (14)

Based on the superposition principle within the linear range, the structural response
Ud

s consists of three components, Ud
s,1, Ud

s,2 and Ud
s,3, which are produced by forces
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−MsΓ sbÜb, −αMsΓ sbU̇ and −βKsbU̇b, respectively. To describe the relative magnitudes
of the three components conveniently, the following parameters are given:

κ21 =
∥∥−αMsΓ sbU̇

∥∥∞∥∥−MsΓ sbÜb
∥∥∞

≈ |α| ‖MsΓ sb‖∞
∥∥U̇

∥∥∞
‖MsΓ sb‖∞

∥∥Üb
∥∥∞

= |α|
∥∥U̇

∥∥∞∥∥Üb
∥∥∞

(15a)

κ31 =
∥∥−βKsbU̇b

∥∥∞∥∥−MsΓ sbÜb
∥∥∞

≈ |β| ‖Ksb‖∞
‖Ms‖∞ ‖Γ sb‖∞

∥∥U̇
∥∥∞∥∥Üb
∥∥∞

≈ |β| ‖Ksb‖∞
‖Ms‖∞

∥∥U̇
∥∥∞∥∥Üb
∥∥∞

(15b)

in which κ21 describes the magnitude of −αMsΓ sbU̇ relative to −MsΓ sbÜb, and κ31

describes magnitude of −βKsbU̇b relative to −MsΓ sbÜb. A simple and approximate calcu-
lation is performed using maximum values in Eq. (15). In Eq. (15a), because |α| < 1 and
velocity is generally smaller than acceleration, κ21 must be a small value. Acceleration in an
earthquake is actually a dynamic input to the structure and velocity can be treated as a static
load because of its long period. Thus, the response produced by load −MsΓ sbÜb has an
amplification compared with static loading and the approximate response produced by load
−αMsΓ sbU̇ has no amplification. In general, Ud

s,2 produced by the second term on the right

side of Eq. (14) can be ignored in comparison with Ud
s,1. In Eq. (15b), |β| < 1 and velocity

is also smaller than acceleration, but the stiffness term is larger than the mass term. Given
that Ksb contains only the stiffness of bottom elements, it is reasonable to describe ‖Ms‖∞
in Eq. (15b) by the mass of bottom elements. When the bottom of the structure is too finely
elementally divided, Ms corresponding to the mass of bottom elements will be very small
and Ksb corresponding to the stiffness of bottom elements will be very large, so κ21 will also
be a large value. This means that the third term on the right side of Eq. (14) cannot be ignored
in comparison with the first term. Thus, the calculated results tend to diverge from the correct
solution obtained with better elemental division of the structural bottom. In general, in ordi-
nary structures with Rayleigh damping assumption, the error problem of the displacement
model can be qualitatively explained as follows: if bottom elements are normally divided,
results from the displacement model are sufficiently accurate. However, if bottom elements
are too finely divided, adopting the displacement model for seismic analysis leads to some
obvious error in the calculated results and the magnitude of this error is significantly related
to the bottom elemental division.

An approximate error evaluation index for the displacement model is described as follows.
According to Eq. (15b) the error is mainly produced by −βKsbU̇b, which has a non-zero value
only at the bottom of the structure. Defining the stiffness matrix of bottom elements as ksb and
earthquake acceleration of corresponding supports as u̇b, the magnitudes of the non-zero items
in −βKsbU̇b can be described by |βksbu̇b|, and the magnitudes of the items in −MsΓ sbÜb

corresponding to bottom elements are approximately equal to |msüb|. Acceleration in an
earthquake is a dynamic input to the structure, so compared with static loading there is an
amplification effect. The velocity input can be considered a static load on the structure because
of its long period. In China’s seismic code, the dynamic magnification factor is assumed to
be 2.25. Using this value, the ratio of responses produced by −βKsbU̇b to those produced
by −MsΓ sbÜb is written as:

τ = (|β|/2.25) (ksb/ms1) (PGV/PGA) (16)

in which PGV is the maximum value of ground velocity and PGA is the maximum value of
ground acceleration in an earthquake. τ/(1 + τ) is approximately equal to the error of the
displacement model and can be used to evaluate error situations.
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constraint or lower parts (DOFs)non-constraint or upper parts (DOFs) ground motion in earthquakes

Fig. 1 Schematic diagram of long-span structure model

When dampers are installed to control the seismic response of a structure, concentrated
damping exists in addition to Rayleigh damping, so in this situation the structure possesses
non-proportional damping characteristics, and is usually referred to as a non-proportionally
damped structure. Even if the structural elements are not too finely divided, the ignored
−CsbU̇b in the displacement model includes concentrated damping that exists in the con-
nection between the supports and upper parts of structure, so the model precision will also
be influenced. However, the displacement model can produce accurate results when concen-
trated damping exists in internal parts of the structure. Here, internal parts of structure mean
nodes and elements of the non-constraint parts in Fig. 1, and excluding elements between
non-constraint and constraint DOFs.

Considering that the stiffness provided by additional dampers has no effect on model
precision, if we assume that the damping matrix provided by dampers in the connection
between the supports and the upper parts of structure is Cd1, the ignored damping term
−CsbU̇b in the displacement model can be expressed as

− CsbU̇b = −βKsbU̇b − Cd1U̇b (17)

Thus, the error of the displacement model is influenced by both stiffness damping and con-
centrated damping. Therefore, except in the case of too fine an elemental division of the
structural bottom, base isolation with concentrated damping at the bottom of the structure
will also lead to some error in the displacement model. Referring to Eq. (16), the error index
involving the influence of element division and concentrated damping can be expressed as
follows:

τ = (|β|/2.25) [(ksb + cd/β)/ms1] (PGV/PGA) (18)

3.2 Acceleration model

In the acceleration model, one usually adopts a static transformation matrix Γ sb = −K−1
s Ksb

to decompose the structural response, and − (Csb + CsΓ sb) U̇b is the source of error in the
acceleration model. When Rayleigh damping and lumped mass are assumed in structure,
Csb = βKsb, Cs = αMs + βKs , the following expression is obtained:

− (Csb + CsΓ sb) U̇b = − [βKsb + (αMs + βKs)Γ sb] U̇b = αMsΓ sbU̇b (19)

The damping term βKsbU̇b related to structural stiffness has been eliminated in calculation,
so the error magnitude is mainly determined by mass damping, which is αMsΓ sbU̇b =
αMsK−1

s KsbU̇b. Considering that the coefficient α is generally <1, and velocity is smaller
than acceleration in an earthquake, and taking into account the dynamic amplification effect,
the response produced by − (Csb + CsΓ sb) U̇b will be less than that produced by MsΓ sbÜb,
so the smaller one can be ignored for approximation purposes. Therefore, for an ordinary
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structure without dampers, the acceleration model is more accurate than the displacement
model in calculation and is not affected by elemental division, so it can be considered an
exact method for seismic analysis of long-span structures.

Concentrated damping exists in structures when additional dampers or isolation devices
are installed. Here, we assume that dampers are installed in the connections between the
upper parts and supports, introducing matrix Cd1 and Cd2 to Eq. (1), in which Cd1 is an
additional term of Csb, and Cd2 is an additional term of Cs. If dampers exist within internal
parts of the structure (not at the supports), we define the damping term Cd3, which corresponds
to an additional term of Cs. Based on the above hypothesis, the ignored damping term in
acceleration model can be expressed as

− (Csb + CsΓ sb) U̇b = αMsΓ sbU̇b − Cd1U̇b − (Cd2 + Cd3)Γ sbU̇b (20)

From the above analysis and Eq. (20), it can be observed that the error of the conventional
acceleration model is mainly due to concentrated damping and has little relationship to
mass damping. Therefore, the acceleration model may produce obvious errors in analysis
of a structure with dampers installed. The error magnitude depends on many factors and is
usually difficult to describe using Eq. (20), so a numerical analysis is presented later in this
paper to examine it.

The damping approximation in the displacement and acceleration models produces some
error and the magnitude of the error is different in different situations. The error magnitudes
and distributions of the two models are also different from each other for the same struc-
ture. In summary, the error of the displacement model is associated with the damping term,
corresponding to the structural parts connected with supports, despite too fine an elemental
division. The ignored damping term cannot be eliminate in the calculation. The error of the
acceleration model is associated with concentrated damping no matter where the damping
concentrates and how the structural elements are divided. The errors and applicable ranges
of the displacement model and the acceleration model can be summarized as follows: the
displacement model is suitable for both linear and nonlinear analysis, too fine an elemental
division of the structural bottom will produce some error, and the error is obviously influ-
enced by the degree of elemental division. When dampers exist in the structure and damping
concentrates in the parts connected to supports, it will also produce some error. However,
because of the superposition principle adopted in the derivation of the acceleration model,
it is only suitable for linear analysis and has good computational accuracy except when
concentrated damping exists in structure.

4 Modification of calculation model

In view of the errors inherent in the displacement model and the acceleration model, both the
time history and stochastic analysis methods should be modified to obtain accurate results and
to facilitate error assessment for conventional calculation models. Corresponding software
implementations are also briefly discussed in this section. The derivation of the stochastic
analysis method makes use of the computationally efficient and accurate pseudo-excitation
method.

4.1 Time history analysis

Accurate time history analysis by the displacement model should take into account the damp-
ing term −CsbU̇b, which requires adopting Eq. (3) to carry out the calculation. In nonlinear
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analysis, the stiffness term −KsbUb and the damping term −CsbU̇b need to be considered
simultaneously. In linear analysis, superposition of the following two equations can be used:

MsÜs,1 + CsU̇s,1 + KsUs,1 = −KsbUb (21a)

MsÜs,2 + CsU̇s,2 + KsUs,2 = −CsbU̇b (21b)

in which Ksb is the stiffness coefficient. Csb is the damping coefficient that incorporates not
only Raleigh damping but also concentrated damping. According to Eq. (21), the accurate
response is

Us = Us,1 + Us,2 (22)

Using engineering software for seismic analysis and design of long-span structure, super-
position is also available in linear situations, and accurate results consist of Us,1 produced
by the displacement model and Us,2 produced by the concentrated damping force. It should
be noted that while the range of ground acceleration between two discrete time points is
assumed to be linear, the corresponding displacement curve must be a cubic spline function.
To obtain more reasonable results when using ground displacement in seismic analysis, either
a higher-order integration algorithm or a smaller integration time step is needed. The same
is true when adopting ground velocity as the input in the calculation.

Similarly, accurate time history analysis by the acceleration model should take into account
the damping term − (Csb + CsΓ sb) U̇b, that is:

MsÜ
d
s + CsU̇

d
s + KsUd

s = −MsΓ sbÜb − (Csb + CsΓ sb) U̇b (23)

in which Csb and Cs are damping coefficients that incorporate both Raleigh damping and
concentrated damping, meaning that dampers exist in structure. The conventional acceleration
model in Eq. (8) can provide sufficiently accurate results when only Raleigh damping exists.
However, concentrated damping may lead to some error. Thus, structural seismic response
with complex damping consisting of two parts is considered as follows:

MsÜ
d
s,1 + CsU̇

d
s,1 + KsUd

s,1 = −MsΓ sbÜb (24a)

MsÜ
d
s,2 + CsU̇

d
s,2 + KsUd

s,2 = − (Csb + CsΓ sb) U̇b (24b)

An accurate response consists of the results in Eq. (24):

Us = Ud
s,1 + Ud

s,2 + Γ sbUb (25)

Thus, using engineering software to calculate the seismic response of a long-span structure
requires linear superposition, which is the combination of Ud

s,1 + Γ sbUb produced by the

conventional acceleration model and Ud
s,2 produced by the additional concentrated damping

force.

4.2 Stochastic analysis

The pseudo-excitation method, proposed and developed by Lin (1992), is an efficient and
accurate method for stochastic analysis of structures and has been widely applied in scientific
research and engineering practice. Therefore, instead of the traditional stochastic method,
the pseudo-excitation method is adopted in this study to calculate structural response to
multi-point earthquake excitation. First, the power spectral density function matrix of ground
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displacement in an earthquake is defined as SUb , with order l × l and l supports. SUb must
be the Hermitian matrix, so it can be decomposed into

SUb =
l∑

j=1

λ jψ jψ
∗T
j (26)

in which superscripts ∗ and T respectively represent conjugation and transposition of the
matrix. λ j and ψ j represent the eigenvalue and eigenvector of SUb . l is the number of
supports. Thus, pseudo-excitation can be constructed using the following eigenpair:

Ũbj = ψ∗
j

√
λ j e

rωt , r = √−1 (27)

In the modified displacement model, the pseudo response is given by Eq. (21):

Ũs j = H (Ksb + Csbrω) Ũbj (28)

in which H = − (
Ks − ω2Ms + rωCs

)−1
. In the conventional displacement model, the

corresponding pseudo response is Ũs j = HKsbŨbj . Thus, the power spectral density function
matrix of structural response Us can be expressed as

SUs =
l∑

j=1

Ũ
∗
s j Ũ

T
s j (29)

The mean square value and root mean square value of the structural response Us can be
obtained by integration of the power spectral density function in Eq. (29).

In the modified acceleration model, the pseudodynamic response is given by combining
Eqs. (24) and (25):

Ũ
d
s j = H

[
MsΓ sbω

2 + (Csb + CsΓ sb) rω
]

Ũbj (30)

in which all parameters have been defined previously. Unlike in Eq. (30), the corresponding

pseudodynamic response in the conventional acceleration model is Ũ
d
s j = HMsΓ sbω

2Ũbj .
Taking into account both the pseudostatic response and pseudodynamic response, the total
pseudo response is given by

Ũs j = Ũ
d
s j + Γ sbŨbj (31)

In the modified acceleration model, the pseudo response is calculated using Eqs. (30) and
(31), and the power spectral density function is calculated using Eq. (29). The mean square
value and root mean square value of the structural response can be obtained by integration
of the power spectral density function. In this discussion of the model modification using
the pseudo-excitation method for high efficiency, it should be noted that using engineering
software is difficult to employ the pseudo excitation method and achieve further stochastic
modification.

5 Numerical study

A simple example of a long-span structure is established to conduct a numerical study of
error situations with the displacement model and the acceleration model. Vigorous theoretical
derivations can be verified by numerical calculations and error situations, magnitudes, distrib-
utions and key influencing parameters can all be analyzed by numerical analysis. A long-span
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Fig. 2 Schematic diagram of
long-span structure model
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Table 1 Parameters of long-span structure and dampers

Parameter of long-span structure Mass m/kg 2.0 × 105

Stiffness k /N m−1 1.0 × 106

Damping ratio of the first two modes 0.05

Parameter of dampers Damping coefficient cd/N s m−1 1.0 × 106

Position of dampers Configuration 1 [0, 1], [0, 8]

Configuration 2 [1, 3], [6, 8]

Configuration 3 [1, 5], [4, 8]

Configuration 4 [2, 4], [5, 7]

Configuration 5 [2, 6], [3, 7]

structure with uniform distributions of mass and stiffness is assumed for this example and is
described by a numerical model with multiple nodes. The nodes are numbered from 1 to 8,
as shown in Fig. 2. Assumptions of lumped mass and Rayleigh damping are adopted. Cor-
responding structural parameters are listed in Table 1. By installing dampers in the structure
to achieve concentrated damping, the accuracy of the structural responses calculated by the
displacement model and by the acceleration model is studied. There are five damper layout
configurations expressed by structural node marks connecting two damper ends, such as [a,
b], which means that the damper connects with structural node a and node b, in which a and
b are both node marks. All damper layout configurations are also listed in Table 1. It can be
observed that additional dampers connect with not only adjacent nodes but also non-adjacent
nodes to study the influence of different damper layout configurations on the accuracy of the
calculation models. From the derivations presented in previous sections of this paper, it can
be observed that the stiffness of the dampers does not affect the accuracy of the calculation
models; for this numerical example, the stiffness of the dampers is set to zero and only damp-
ing coefficients are considered. Corresponding parameter values of the dampers are shown
in Table 1. Because of the lack of suitable actual earthquake records, it is usually difficult to
find a suitable multi-point ground motion to excite structure. Thus, we develop a simulation
procedure to generate artificial multi-point ground motion in an earthquake, and referring
to China’s seismic code, the relevant parameter settings are the following: the earthquake is
a rare 8 degrees; the site class is II; the modified Clough–Penzien power spectral model is
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adopted, as is the Hao coherent model (which yields good simulation effects in the range
of one hundred meters); and the seismic apparent wave velocity is 400 m/s. To analyze the
seismic responses of structures with different spans, a program was developed to generate a
four-point equally spaced earthquake excitation, with the four points as point A (0 m), point
B (100 m), point C (200 m), point D (300 m). The acceleration, velocity and displacement
time histories of the four points are shown in Fig. 3. Baseline adjustment of the displacement
time history is also conducted. Figures 4, 5, 6 illustrate the degree of fit of the power spectral
density functions, the coherent coefficients and the response spectra of the simulated multi-
point earthquake excitation. These figures show that the generated multi-point earthquake
excitation is suitable and appropriate. The four-point ground motion was used to construct
several combinations of earthquake excitations, expressed as [A, A], [A, B], [A, C] and [A,
D], in which, for example, [A, D] refers to adopting points A and D as the multi-point input.
To facilitate the presentation below, four calculation models adopted for seismic analysis of
long-span structures are expressed as follows: the displacement model is abbreviated as DM,
the acceleration model is abbreviated as AM, the modified displacement model is abbreviated
as M-DM, and the modified acceleration model is abbreviated as M-AM. According to the
theoretical derivations presented in previous sections, the results obtained from M-DM and
M-AM can be considered accurate values and thus can be used to assess the accuracy of DM
and AM.

5.1 Ordinary structure with Rayleigh damping characteristic

The accuracy of the displacement model and the acceleration model in calculation of the
seismic response of an ordinary structure with Rayleigh damping is examined in this section.
Earthquake combination [A, D] is adopted as the multi-point input, and the structural para-
meter settings in Table 1 are used assuming no dampers are installed in structure. In seismic
analysis and structural design, internal forces between adjacent nodes are closely related to
relative displacements, so here, relative displacement is used as an index, and four repre-
sentative nodes numbered 1, 8, 4, 5 are selected for consideration in the analysis. Figure 7
shows the relative displacements of nodes 1, 8, 4, 5 as calculated by DM, AM, M-DM and
M-AM, respectively. For nodes 1 and 8, the displacement relative to corresponding connected
supports is adopted; for node 4, the displacement relative to node 3 is adopted; and for node
5, the displacement relative to node 6 is adopted. Figure 7 illustrates clearly that the time
history responses given by the four calculation models are nearly coincident. This implies
that both displacement model and the acceleration model are sufficiently accurate and that
the calculated results do not need to be corrected. This is why the displacement model and
the acceleration model are often used in design and analysis by most researchers and engi-
neers: both of the models are accurate enough to calculate the seismic response of ordinary
structures.

The structural parameter settings in Table 1 are taken as case 1. We can divide the long
span structure into models composed of several elements. The following five additional cases
are defined in terms of the number of elements into which the structure is divided: case 2,
number of nodes n = 16, node mass ms = 2 × 105/(16/8)kg, element stiffness ks =
1×106 × (16/8) N/m; case 3, number of nodes n = 32, node mass ms = 2 × 105/(32/8)kg,
element stiffness ks = 1 × 106 × (32/8) N/m; case 4, number of nodes n = 64, node mass
ms = 2 × 105/(64/8)kg, element stiffness ks = 1 × 106 × (64/8) N/m; case 5, number of
nodes n = 128, node mass ms = 2 × 105/(128/8)kg, element stiffness ks = 1 × 106 ×
(128/8) N/m; and case 6, number of nodes n = 256, node mass ms = 2 × 105/(256/8)kg,
element stiffness ks = 1 × 106 × (256/8) N/m. Node 1 is taken as an example, and DM,
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Fig. 3 Acceleration, velocity, displacement time histories of simulated multi-point ground motion. a Point
A, b point B, c point C, d point D

AM, M-DM and M-AM are applied as calculation models. The displacement time histories
of node 1 relative to its support (shown as node 0 in Fig. 2) are calculated for cases 1 to 6. To
obtain accurate results, a high-order iterative algorithm should be used with the displacement
time history as the external input. This is because ground displacement actually follows a
cubic spline function corresponding to the linear variation of ground acceleration between
neighboring time points. Figure 8 shows the curves of the calculation results corresponding
to the six cases. Some errors exist where bottom elements of the structure are too finely
divided, and the more finely divided the elements are, the larger the calculation errors of the
displacement model are. These results agree well with the theoretical derivations presented
in Sect. 3.1. In Fig. 8, the error produced by the displacement model approaches or exceeds
100 % when the numbers of nodes n = 128, 256. This means that there will be a large error in
the corresponding bottom shear, which may lead to overly conservative seismic design. We
next adopt as an example, case 5 with 128 nodes, for which the displacement model produces
significant apparent errors. In similar fashion to that shown in Fig. 2, the structural nodes for
case 5 are numbered counterclockwise from 1 to 128. We select a series of nodes (1, 2, 8, 16,
32, 64, 127, and 128) and adopt a series of corresponding neighboring nodes (0, 3, 9, 17, 33,
65, 126, and 0). We use a variety of seismic combinations ([A, A], [A, B], [A, C] and [A, D]) as
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Fig. 4 Comparison of simulated and target power spectrum density of multi-point ground motion
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Fig. 5 Comparison of simulated and target coherence coefficients of multi-point ground motion

multi-point inputs, and we calculate the maximum values of the relative displacements of the
selected nodes using the four models (DM, AM, M-DM and M-AM). The results are shown in
Fig. 9. Obvious error exists in the relative displacements of the structural bottom elements for
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Fig. 6 Comparison of simulated and design response spectrum of multi-point ground motion in seismic code
of China. a Earthquake response spectrum at point A and B, b earthquake response spectrum at point C and D
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Fig. 7 Displacement time histories of node 1, 8, 4 and 5 in ordinary structure with Rayleigh damping based
on four seismic calculation models. a Node 1 and 8. b Node 4 and 5
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Fig. 8 Displacement time histories of node 1 of ordinary structure under different element divisions. a Node
number 8, 16 and 32. b Node number 64,128 and 256
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Fig. 9 Maximum displacement responses of several structural nodes subjected to different seismic combina-
tions based on four seismic calculation models. a Seismic combination [A, A], b seismic combination [A, B],
c seismic combination [A, C], d seismic combination [A, D]

the displacement model when the structural bottom is too finely divided. Moreover, different
earthquake excitations have different influences on the error situation, mainly in relation to
the ratio between peak velocity and peak acceleration of ground motion (PGV/PGA). From
Eq. (16) we know that the larger the PGV/PGA ratio, the larger the calculation error of the
displacement model, so the error in the results calculated with the displacement model will
be more apparent for cases in which the structural bottom is too finely divided and near-
field ground motion consisting of a large velocity pulse is assumed. Figure 9 also shows
that when bottom elements are too finely divided obvious error will exist in the internal
force on the bottom elements calculated by the displacement model, even if uniform ground
motion is assumed. Moreover, the calculation error tends to diverge increasingly from the
correct solution as the bottom elements are more finely divided. Figure 9 also shows that
the acceleration model always has good accuracy in seismic response calculation no matter
how the structural elements are divided. This can be explained by the theoretical derivations
presented in previous sections: for an ordinary structure with Rayleigh damping, the influence
of the ignored damping term on the accuracy of the acceleration model is small, and mass
damping is also relative small, so the calculation error can be neglected. In general, some
error exists in the displacement model’s seismic response calculation for ordinary structures
with Rayleigh damping, and this error becomes more obvious as the bottom elements are
more finely divided. In contrast to the responses obtained from the displacement model,
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Fig. 10 Displacement time histories of node 1 and 4 based on four seismic calculation models while the
concentrated damping characteristic exists at the bottom of structure. a Node 1. b Node 4

the seismic responses of ordinary structures obtained from the acceleration model can be
considered accurate.

5.2 Structure with concentrated damping existing at the bottom

When dampers are installed at the bottom of a structure, concentrated damping exists near
the supports. Case 1 (8 nodes) is selected as an example of a structure that can avoid error
produced by too fine an elemental division. The structural parameters and damper configura-
tion corresponding to case 1 are listed in Table 1. The excitation for this example is seismic
combination [A, D]. Figure 10 shows the relative displacement time histories of nodes 1
and 4 obtained from four calculation models. Node 1 represents a bottom node, and its dis-
placement is relative to its support (node 0). Node 4 represents an internal node, and its
displacement is relative to node 5. Figure 10 shows that when concentrated damping exists
at the bottom of the structure, the displacement model will yield erroneous results even if
the bottom elements are not too finely divided. In this numerical example, the degree of
error exceeds 100 %, and the errors produced by the displacement model exist not only in
the bottom nodes but also in the internal nodes of the structure, as is the case for node 4
as shown in Fig. 10b. This figure also shows that the acceleration model is relatively more
accurate than the displacement model. It should be remembered that regardless of whether
the displacement model or the acceleration model is adopted, concentrated damping at sup-
ports can also cause calculation error independent of the degree of elemental division. Here,
concentrated damping at supports means that there are dampers connecting bottom elements
or internal elements with supports.

To further study error situations for the calculation models, a variety of seismic combina-
tions ([A, A], [A, B], [A, C] and [A, D]) are adopted, and the maximum values of the seismic
response of all structural nodes are considered. Nodes 0, 3, 4, 5, 6, 7, 8, and 0 are selected
as neighbors for nodes 1, 2, 3, 4, 5, 6, 7, 8, respectively, where 0 denotes a support. The
calculation results are shown in Fig. 11. For all of the seismic combinations studied, relative
displacements of the structural nodes, as calculated by the displacement model, have obvious
error. Different seismic combinations have different calculation errors. The calculation error
of the displacement model exists not only for the bottom elements but also for the internal
elements of structure. The calculated seismic response at the bottom is greater than the correct
value, and the calculated response at internal elements of the structure is smaller than the
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Fig. 11 Maximum displacement responses of all structural nodes subjected to different seismic combinations
based on four seismic calculation models while the concentrated damping characteristic exists at the bottom
of structure. a Seismic combination [A, A], b Seismic combination [A, B], c Seismic combination [A, C],
d Seismic combination [A, D]

value. The seismic response calculated by the acceleration model is also inaccurate, but the
error is small compared with that produced by the displacement model. Figure 11 shows that
even when seismic combination [A, A], denoting uniform input, is adopted, some error still
exists with the acceleration model. This is mainly because the static transformation matrix
Γ sb = −K−1

s Ksb is adopted in the calculation. If Γ sb = I and mass damping is neglected, it
does not produce any error. In this situation, the acceleration model actually equals Eq. (9),
which is usually used in seismic analysis.

Setting dampers at the bottom of structure, error situations corresponding to different
damping coefficients can be studied. We define a constant value CD = 1×106 N×m× s−1,
and accordingly, we adopt four damping coefficients: cd = [1, 5, 10, 20] × CD, and seismic
combination [A, D]. We select two representative nodes, 1 and 4, and the displacements
of the two nodes relative to nodes 0 and 5, respectively, are selected as indices. Figure 12
shows the change in the maximum values of the seismic displacement responses of nodes
1 and 4 with increasing damping coefficient. It can be observed that the larger the damping
coefficient, the more apparent the calculation error of the displacement model. When the
acceleration model is adopted in the seismic calculation and cd = 20 × 106 N × m × s−1,
the errors corresponding to nodes 1 and 4 are also obvious. Therefore, we conclude that
increasing the damping coefficients provided by dampers leads to increasing error with the
displacement model, which is consistent with the findings from the theoretical derivations and
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Fig. 12 Maximum displacement responses of node 1 and 4 corresponding to different damping coefficients
at the bottom of structure based on four seismic calculation models. a Node 1. b Node 4
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Fig. 13 Error of calculation responses of all structural nodes corresponding to different damping coefficients
at the bottom of structure based on displacement model

numerical analyses presented in previous sections. However, increasing damping coefficients
has little influence on the accuracy of the acceleration model, although the errors still increase
accordingly. To further study error situations of the displacement model and the acceleration
model, we define error indices ρDM and ρAM :

ρDM = abs (max |uDM| − max |uM-DM|)/max |uM-DM| (32a)

ρAM = abs (max |uAM| − max |uM-AM|) /max |uM-AM| (32b)

in which uDM is the result calculated with the displacement model, uAM is the result calcu-
lated with the acceleration model, uM-DM is the corrected result calculated with the mod-
ified displacement model, and uM-AM is the corrected result calculated with the modified
acceleration model. Both uM-DM and uM-AM can be considered accurate results. The error
index proposed in Eq. (32) does not consider positive and negative value changes because
it only addresses the magnitude of error. Therefore, we assign seven damping coefficients,
cd = [1, 5, 10, 15, 20, 25, 30]× CD, to the dampers. The relative displacements of all of the
structural nodes are calculated, and the errors are further identified. The calculation model
adopted is the same as in the previous sections. Figure 13 illustrates the error situations of
the relative displacement time histories of the structure corresponding to the various damp-
ing coefficients considered. Obvious errors exist in the seismic responses of all structural
nodes calculated by the displacement model. For bottom elements of the structure, as the
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Fig. 14 Error of calculation responses of all structural nodes corresponding to different damping coefficients
at the bottom of structure based on acceleration model

damping coefficient increases, the calculated displacement diverges increasingly from the
correct value. For internal elements of the structure, the calculation error increases with the
damping coefficient and approaches a stable value, and the errors for all of the internal nodes
of the structure are similar. Figure 14 illustrates error situations for relative displacement
time histories of the structure corresponding to several different damping coefficients, with
the acceleration model adopted for the calculations. It can be observed that the acceleration
model is more accurate than the displacement model. Increases in the damping coefficient
correspond to increasingly obvious errors calculated with the acceleration model, most obvi-
ously for the bottom elements of the structure. In the numerical example, the maximum error
at the bottom approaches 200 %. The errors for the internal elements of the structure are
relatively small, and the maximum error for the internal elements is <25 %. The magnitude
of error varies by element, but the errors for the internal nodes of the structure do not increase
as the damping coefficient increases. This is mainly due to mutual cancellation of the ignored
damping term in the acceleration model for internal nodes. In general, errors produced by the
displacement model are obvious when dampers are installed at the supports, and increases
in the damping coefficient correspond to increasing errors for bottom elements, while those
of internal elements are relatively small and stable. When the acceleration model is applied
to a structure equipped with dampers, increases in the damping coefficient correspond to
some increase in errors for bottom elements, and errors for internal elements are small and
unstable, although errors for some internal nodes may decrease. Thus, when concentrated
damping exists at supports, both of the displacement model and the acceleration model need
to be modified, especially for elements connected to supports.

5.3 Structure with concentrated damping existing in the internal parts of structure

When dampers are installed within the upper parts of a long-span structure, concentrated
damping characteristics exist in internal parts of the structure. Damper configurations num-
bered 2–5 are listed in Table 1. From the theoretical derivations presented in previous sections,
we know that when dampers are installed in internal parts of a structure its error mechanism
is different from that when dampers are installed at the supports. Assuming that concen-
trated damping only exists in upper parts of the structure, a further numerical study on the
range of applicability and error situations of the four calculation models (DM, AM, M-DM
and M-AM) is conducted. The structure is assumed to be an 8-node model, and its para-
meters are listed in Table 1. The seismic excitation combination adopted is [A, D]. Damper
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Fig. 15 Displacement time histories of all structural nodes based on four seismic calculation models while
the concentrated damping characteristic exists within internal parts of structure. a Node 1 and 2. b Node 3 and
4. c Node 5 and 6. d Node 7 and 8

configuration 3 is used with a damping coefficient of cd = 10×106 N×m× s−1. Nodes 1–8
are selected, and the indices are defined in terms of the relative displacements of these nodes.
The corresponding neighboring nodes are 0, 3, 4, 5, 6, 7, 8, and 0, respectively. Figure 15
shows the relative displacement responses of the structural nodes. It can be observed that
the acceleration model produces obvious errors except for nodes 1 and 8. However, in this
case, the displacement model can be considered a nearly accurate calculation model, which
can be explained by the theoretical derivation presented previously: when there is concen-
trated damping in internal parts of the structure, the ignored damping term −CsbU̇b in the
displacement model only includes stiffness damping, which is small enough to be neglected.
Therefore, the following analysis focuses primarily on the calculation error associated with
the acceleration model.

Several damper configurations are used to study the error of the acceleration model. The
parameter settings are similar to those above, and the damper configurations 2–5 adopted
are summarized in Table 1. Maximum values of the relative displacement responses of the
structural nodes are selected as indices to assess the accuracy of the acceleration model.
Figure 16 shows the maximum values of the relative displacement responses of structural
nodes based on the four calculation models and the different damper configurations. It can
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Fig. 16 Maximum displacement responses of all structural nodes corresponding to different damper config-
urations based on four seismic calculation models. a Configuration 2, b Configuration 3, c Configuration 4,
d Configuration 5

be observed from Fig. 16 that there is some error produced by the acceleration model for all
damper configurations, and the error is relatively obvious for internal parts of the structure. To
clearly describe error situations of the acceleration model for different damper configurations,
error indices ρDM and ρAM in Eq. (32) are adopted. Figure 17 describes the error situation
for the acceleration model. It can be observed that errors in the displacement response of the
same structural node vary greatly for different damper configurations. For example, errors for
node 6 under different damper configurations are generally small, but the error corresponding
to damper configuration 2 is 40 %. Moreover, errors for different nodes differ greatly for the
same damper configuration. From the figure, it can also be observed that the errors produced
by the acceleration model for bottom elements are relatively small, but the errors for internal
elements of the structure are large. However, the relationship between error and damper
configuration is difficult to describe and assess, and the errors produced by the acceleration
model differ significantly for different damper configurations, so the acceleration model
needs to be amended in practical engineering applications.

A variety of seismic combinations ([A, A], [A, B], [A, C] and [A, D]) and damper configu-
ration 3, corresponding damping coefficient is cd = 10×106 N×m×s−1, are adopted for the
next numerical analysis. The accuracy of the acceleration model is studied for different seis-
mic combinations. Maximum values of the relative displacement responses of all structural
nodes are adopted as indices, and 0, 3, 4, 5, 6, 7, 8, and 0 are selected as neighboring nodes
for nodes 1, 2, 3, 4, 5, 6, 7, and 8, respectively, where 0 denotes support. Figure 18 shows the
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Fig. 17 Error of calculation responses of all structural nodes corresponding to different damping coefficients
while concentrated damping exists in internal parts of structure based on acceleration model
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Fig. 18 Maximum displacement responses of all structural nodes subjected to different seismic combinations
while the concentrated damping characteristic exists within internal parts of structure based on four seismic
calculation models. a Seismic combination [A, A], b Seismic combination [A, B], c Seismic combination
[A, C], d Seismic combination [A, D]

results obtained with the acceleration model for the different seismic combinations. Because
error produced by the acceleration model usually appear at internal parts of the structure, only
internal parts are addressed here. Figure 18 shows that under uniform earthquake excitation
the acceleration model can be considered accurate. Increases in the difference in earthquake
excitations at two supports correspond to increasing errors produced by the acceleration
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Fig. 19 Maximum displacement responses of node 1 and 4 corresponding to different damping coefficients
based on four seismic calculation models. a Node 1. b Node 4

model. This is mainly because (Csb + CsΓ sb) in the ignored term, − (Csb + CsΓ sb) U̇b of
the acceleration model, there is a two-column matrix, and elements in the first and second
columns corresponding to concentrated damping are usually of similar size and opposite in
sign. Only when each earthquake excitation in U̇b is different may the ignored term play a
key role and lead to some obvious error with the acceleration model. The greater the differ-
ence of earthquake excitations between two supports, the greater the error of the acceleration
model. Therefore, it can be concluded that different earthquake inputs at supports influence
the accuracy of the acceleration model.

When dampers are installed within internal parts of the structure, concentrated damping
exists in the positions where they are installed. In this next numerical analysis, the influ-
ence of the damping coefficient on calculation error with the acceleration model is studied.
As in the previous analysis of concentrated damping at supports, we define constant value
CD=1×106 N×m×s−1 and adopt four damping coefficient values, cd = [1, 5, 10, 20]×CD.
Seismic combination [A, D] is used as input. Two representative nodes, 1 and 4, are selected,
and displacements of the two nodes relative to nodes 0 and 5, respectively, are used as research
indices. Figure 19 illustrates the change in the maximum response values of node 1 and 4
with variation in the damping coefficient. For node 1, when the damping coefficient increases,
the response calculated with the acceleration model first decreases and then becomes stable.
For node 4, when the damping coefficient increases, the response first increases and then
becomes stable. The error change associated with the acceleration model for different damp-
ing coefficients can be described by error indices ρDM and ρAM in Eq. (32). Adopting damper
configuration 3, Fig. 20 describes error situations of relative displacement responses of struc-
tural nodes calculated by the acceleration model. Different error magnitudes are observed to
exist in the displacement responses of the different structural nodes calculated by the accel-
eration model. These errors tend to be stable despite increases in the damping coefficient, as
illustrated by Fig. 21 for damper configuration 4.

6 Conclusions

This paper presents a systematic study of calculation models for seismic analysis of long-
span structures under multi-point excitation in an earthquake. Several calculation models are
derived based on dynamic theory, and then an important but often overlooked problem in
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Fig. 20 Error of calculation responses of all structural nodes corresponding to different damping coefficients
in damper configuration 3 based on acceleration model
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Fig. 21 Error of calculation responses of all structural nodes corresponding to different damping coefficients
in damper configuration 4 based on acceleration model

conventional calculation models is identified and described. Sources of error and situations in
which they may occur with the displacement model and the acceleration model are explained,
and model modifications for time history and stochastic analysis are presented. Based on
the theoretical derivations and numerical analyses presented in this paper, the following
conclusions are drawn:

(1) The displacement model and the acceleration model have different ranges of applicability
in seismic analysis of long-span structures. The displacement model is applicable for
both linear and nonlinear analysis, but the acceleration model can only used in linear
cases because of the adoption of the superposition principle in its derivation. The errors
of the two models are both produced by ignoring the damping terms, such that the error
problem is actually a damping problem. It should be noted that the two models have
different damping assumptions and error-induced mechanisms.

(2) For an ordinary structure with Rayleigh damping, the displacement model is sufficiently
accurate for calculation of the seismic response structure, except when the bottom ele-
ments are too finely divided. Obvious errors occur mainly in the calculated displacements
of bottom elements and are affected by elemental division. For structures with dampers
at the bottom, both damping coefficients provided by dampers and the ratio of ground
velocity to acceleration (PGV/PGA) have an important influence on the magnitude of
error associated with the displacement model, so that in a near-fault earthquake, the error
is more obvious. Unlike the case with an ordinary structure, errors occur for both the
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bottom and internal parts of long-span structure. Increases in the damping coefficient
correspond to increasingly obvious errors for bottom elements, while errors for internal
elements tend to remain stable.

(3) In an ordinary structure with Rayleigh damping, the acceleration model has good calcu-
lation precision and is not influenced by bottom elemental division, so it can be consid-
ered an accurate method of seismic analysis for this type of structure. When dampers are
installed in the structure, regardless of whether concentrated damping exists at the bot-
tom or within internal parts of the structure, the calculation precision of the acceleration
model will be affected, and some error will result.

(4) When concentrated damping exists at the supports, the responses of all structural nodes
calculated with the acceleration model exhibit obvious error. As with the displacement
model, the error of the acceleration model is mainly a function of the damping coefficients
and the ratio of ground velocity to acceleration (PGV/PGA), so there is obvious error
in the calculated accelerations in the case of a near-fault earthquake. Increases in the
damping coefficient correspond to increasingly obvious errors for bottom elements, while
errors for internal elements tend to remain stable.

(5) When concentrated damping exists within the internal parts of the structure, the error
produced by the acceleration model for bottom elements is relatively small, and some
error is also produced for the internal parts. Similarly, the error produced by the accel-
eration model is affected by the damping coefficient and the ratio of ground velocity to
acceleration (PGV/PGA), so there is obvious error in the calculated accelerations in the
case of a near-fault earthquake. Errors produced by the acceleration model are closely
related to the damper configurations and the different motions of multiple supports in
an earthquake. Increases in the damping coefficient correspond to increasingly obvious
errors for the bottom elements, while errors for internal elements tend to remain stable.
Differences in the motion of all of the supports in an earthquake affect the error associ-
ated with the acceleration model, and while the differences tend to be distinct, the errors
tend to be obvious. If there are no differences in the motion of the supports, the error
produced by the acceleration model is too small to be neglected.

(6) The modification to the time history analysis method described in this paper based on
fundamental dynamic theory and yields results equal in accuracy to those obtained by
the large mass method or the large stiffness method. Moreover, based on the pseudo-
excitation method, stochastic expressions are derived and improved to conduct efficient
and accurate calculations. Given that the pseudo-excitation method utilizes random exci-
tation as a sinusoidal input, the calculation error associated with stochastic analysis is
similar in magnitude to that associated with time history analysis.
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