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ABSTRACT 
In this paper, a fast stochastic analysis method is presented to compute the seismic response 
of the soil-structure interaction system. Using the classical modal decomposition and the 
pseudo-force method, a closed form sequence is developed for iterative computation. It can 
account for the non-proportional damping and dynamic interaction between the soil region 
and the structure. Moreover, the pseudo-excitation method is introduced in the derivation for 
improving the computational efficiency of the stochastic analysis. The necessary and 
sufficient condition for convergence of the sequence is also provided. Compared with the 
forced decoupling method, the proposed method can significantly improve the accuracy of the 
results without obviously increasing computational efforts. In the end, some numerical 
examples are carried out to examine the accuracy and convergence of the new method. 
KEYWORDS: soil-structure interaction system; stochastic analysis; iterative method. 

 

INTRODUCTION 

Soil-structure interaction is a collection of phenomena in the response of structures 
caused by the flexibility of the foundation soils, as well as in the response of soil region 
caused by the presence of structures. During the last three decades, many studies on the 
subject have been carried out (Seed, et al., 1975; Veletsos and Prasad, 1989; Zhang, et al., 
1999; Lou and Wu, 1999; Ghiocel and Ghanem, 2002; Gao, et al., 2009). Because the 
soil-structure interaction system consists of two parts with distinct damping 
characteristics, which is usually called non-proportional damping, the equations of 
motion can not be represented by assembly of a series of independent oscillators. As the 
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most common approach, the forced decoupling method (Elishakaff and Lyon, 1986) is 
adopted for seismic analysis of non-proportionally damped system by simply neglecting 
the off-diagonal elements of the transformed damping matrix, which is appealing to the 
design professionals because it enable the use of the traditional modal analysis methods. 
When the damping characteristic of the combined system is approximately identical, the 
error introduced by the method is so small that it can usually be ignored. However, the 
results obtained by this method are not exactly accurate theoretically and might introduce 
significant error in some cases, especially for the soil-structure interaction system, the 
two parts of which possess dramatically distinct properties. Therefore, in order to obtain 
more exact results, the complex eigenproperties via state-space approach (Foss, 1958) is 
developed for the modal analysis. However, the calculation of complex eigenvalues 
problem is cumbersome and time-consuming, and thus attempts to overcome the 
computational difficulties of this approach have been carried out (Lou, et al., 2003; Karen 
and Mohsen, 2005; Fernando and María, 2006; Hea, et al., 2007). On the other hand, 
based on the pseudo force method (Claret and Venancio, 1991; Lin, et al., 2003), an 
iterative procedure for computing the transfer function matrix of a non-classically 
damped system has also been developed (Jandid and Datta, 1993; Zavoni, et al., 2006). 
The iterative methods have more advantages than the complex modal superposition 
methods in terms of speed, and it retains the advantages of the real-valued modal 
superposition methods. Therefore, the iterative method is generally considered to be more 
applicable than the other methods either for time history or stochastic analysis of 
combined system with distinct damping characteristics. 

In this paper, a fast iterative method is proposed for the stochastic analysis of soil-
structure interaction system. It can account for the non-proportional damping by 
introducing the pseudo-force method and, at the same time, the pseudo-excitation method 
is adopted for improving the computational efficiency. Besides, the classical modal 
decomposition, which is more applicable in the practical engineering, is used in the new 
method instead of the complex or real mode shapes of the combined system. Finally two 
model of soil-structure system are taken as numerical examples to illustrate the proposed 
method. 

 

FORMULATION OF ITERATIVE SEQUENCE 

1. Classical modal decomposition 

Figure 1 gives the general model of the soil-structure interaction system. As has 
been studied in the literatures (Lou and Zhao, 1994; Jin, et al., 1997; Bi and Zhang, 2003; 
Li, et al., 2004), the seismic equilibrium equation of the combined system can be 
established according to several approaches. For brevity, all of the proposed mathematic 
models can be expressed in the following form: 

+ + =MU CU KU F�� �                            (1) 
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in which sM , sC  and sK  are the mass, damping and stiffness matrices of the structure 
respectively. gM , gC  and gK  are the mass, damping and stiffness matrices of the soil 
region with no structure attached on. sgC , sgK  are coupling matrices which include the 
damping and stiffness properties of the elements connecting the structure and the soil 
region. U  denotes the total or relative displacement vector of the soil-structure 
interaction system according to the modeling method. The vector F  represents the 
external force imposed on the soil-structure interaction system which is introduced by the 
ground motion.  

Soil Region 

Structure

Base

Ground Motion 

Edge of Soil Region 
 

Figure 1: Schematic diagram of soil-structure interaction system 

Usually modal analysis is adopted to reduce the nodal equations into a system of 
equations expressed in modal coordinates. However, the full eigensolution problem of the 
combined soil-structure system is uneconomical. A transformation of coordinates defined 
using concepts from the component-mode synthesis is generally adopted. It can be 
defined as: 

T T
s s s s s s s=Φ M Φ Ω Φ K Φ                          (3a) 

T T
g g g g g g g=Φ M Φ Ω Φ K Φ                         (3b) 
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in which sΦ  and gΦ  are generalized mode shapes corresponding to the structure and 
the soil region respectively. sΩ  is the diagonal matrix listing the natural radian 
frequencies of the structure and gΩ  is that of the soil region. Hence, according to the 
component-mode synthesis, the following coordinate transformation is obtained: 

0
0

s

g

⎡ ⎤
= ⎢ ⎥
⎢ ⎥⎣ ⎦

Φ
Φ

Φ
                             (4) 

Thus, the response U  of the soil-structure system can be expressed as: 

=U Φq                                (5) 

By pre-multiplying both sides of equation (1) with the matrix TΦ , we can write the 
differential equations of motion as follows: 

+ + =Iq Cq Kq P�� �                            (6) 

in which I  is the identity matrix, and 
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in which sC  and sK  are diagonal matrices denoting the damping and stiffness 
characteristics of the structure in the modal coordinate system. gC  and gK  correspond 
to those of the soil region in the modal coordinate system. sgC  and sgK  are usually full-
rank matrices representing the coupling terms of the soil region and the structure. 

T=P Φ P  represents the transformed external force vector in the modal coordinates. It 
can easily be seen that the modal responses described in equation (6) is coupled. Based 
on the principles from pseudo-force method, an iterative sequence to evaluate the exact 
response of the soil-structure interaction system can be formulated. Accordingly, the 
damping and stiffness matrices in the modal coordinates are decomposed as: 

d f= +C C C                             (8a) 

0
diag[ ]
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s

d sg
g
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d f= +K K K                            (8c) 
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in which diag[ ]  denotes the diagonal entries of matrices. Matrices dC  and fC  are the 
diagonal and off-diagonal elements of C  respectively. Matrices dK  and fK  are the 
diagonal and off-diagonal elements of K  respectively. Thus, the equation (6) can be 
reconstructed as: 

d d f f+ + = − −Iq C q K q P C q K q�� � �                      (9) 

2. Iterative sequence for stochastic analysis 

In the stochastic analysis of combined soil-structure system described in equation 
(1), the external force vector P  is considered to be a series of zero mean Gaussian 
processes, and the power spectral density (PSD) function vector is denoted as 
PS .Because of the computational complexity of traditional random vibration theory, the 

pseudo excitation method is introduced here, and the external force is assumed to be the 
pseudo harmonic excitation:  

T=P Φ P , r te ω= PP S , 1r = −                    (10) 

Define: 

2 1( )d d drω ω −= − + +H I C K                      (11) 

According to equations (9), (10) and (11), the iterative solution of pseudo response q  
can be given by: 

( ) ( )k k r te ω
ω=q q                            (12a) 

( ) ( 1)( )k T k
d f frω ωω −⎡ ⎤= − +⎣ ⎦Pq H Φ S C K q , 1,2,k = …         (12b) 

in which (0) 0=q  and (0) 0ω =q  are assumed to be the initial pseudo response. If the 
iterative sequence converges, the exact results of pseudo response q  can be obtained by 
equation (12). Then, the displacement PSD of the soil-structure system can be obtained 
by: 

* T=US U U                              (13) 

in which, the superscript *  indicates the complex conjugate. U  can be obtained by 

equation (5). Before closing this section, it is useful to generalize equation (13) for 
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response quantities other than nodal displacement. It is well known that a displacement-

related response quantity ( )z t  such as an internal force or stress, can be expressed in 

terms of the vector of nodal relative displacement, U  

( )z t = ΓU                              (14) 

where, Γ  is an vector of constants. For the internal force in a member, for example, Γ  

is given in terms of the elements of the stiffness matrix of the member. Thus, the PSD of 

the response quantity ( )z t  can be expressed as: 
* *( ) ( )T T T T

zS S= = = UΓU ΓU ΓU U Γ Γ Γ                 (15) 

Then, the spectral moments of zS  are defined as follows: 

n
n zdβ ω ω

∞

−∞
= ∫ S                           (16) 

3. Convergence condition 

Let eq , e
ωq  be the exact value of pseudo response of equation (9) under the pseudo 

excitation, and ( )kq , ( )k
ωq  be the approximate value corresponding to the kth step of the 

iterative process. Then, equation (12) for exact pseudo response can be rewritten as: 

( )e T e
d f frω ωω⎡ ⎤= − +⎣ ⎦Pq H Φ S C K q� �                     (17) 

Subtracting equation (12b) from equation (17), and noting that the error of kth  iterative 
step can expressed as ( ) ( )k e kδ = −q q , ( ) ( )k e k

ω ω ωδ = −q q , one can obtain: 

( )( ) ( 1)k k
d f frω ωω −= − +δ H C K δ� �                       (18) 

Define: 

( )d f frω ω= − +N H C K� �                         (19) 

This then yields the recursion of the error: 

( ) (0)k k
ω ω ω=δ N δ                             (20) 

It can be easily known that if 0k
ω →N  while k →∞ , then ( ) 0k

ωδ → , which means 
that the iterative solution of equation (15) converges to zero. This condition is equivalent 
to the spectral radius 

ω
ρ
N

 of ωN , being less that unity for all Rω∈ , that is:  
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1
ω

ρ ≤
N

                              (21) 

While the condition described in equation (21) is satisfied, the stochastic response 
obtained by equation (12) will converge to the exact results. Moreover, in order to 
evaluate the convergence speed of the iteration, we define the error as follows: 

( ) ( )( )( )  RMS ( ) ( ) RMS ( )e k e
k R R

i i i iω ω ωω ω∈ ∈
= −Err q q q              (22a) 

( )1/
0

k
k kv = Err Err                        (22b) 

where, ( )k iErr  is defined as the normalized root mean square (RMS) of norm error of 
the ith  component in kth  iteration. kv  is the average reduction factor per iteration for 
the successive error norms. kErr  is the Euclidean norm of the error vector at kth  
iteration and 0Err  is the Euclidean norm of initial error vector. Also, we can define: 

( )0
1 logk kCR
k

= − Err Err                     (23) 

as the average rate of convergence over kth iteration. 

 

NUMERICAL EXAMPLES 

The stochastic response of combined system, such as the soil-structure system and 
primary-secondary system and so on, has been analyzed by using complex eigenvalues 
and eigenvectoers (Igusa, et al., 1984) and by using the pseudo-force approach but for 
real eigenvalues and eigenvectoers of the undamped combined system (Jangid and Datta, 
1993). Accordingly, the iterative equation has also been improved by adopting the 
classical modal decomposition (Zavoni et al., 2006). But it can be noted that all the 
methods are based on the conventional random theory which is usually computational 
inefficient for stochastic analysis of large systems. And a fast stochastic analysis method 
which is denoted as the pseudo-excitation method has been developed (Lin, 1992). 
Therefore, based on the pseudo-excitation method, some stochastic analysis methods for 
the combined system with non-proportional damping characteristics were proposed (Xu 
and Zhang, 2001; Lin and Zhang, 2004). However, all of these methods require either the 
solution of complex eigenvalues problem or the inverse operation of matrices. By 
overcoming these difficulties in computation, a new iterative method is proposed in this 
paper with more advantages. The chief advantage is its accuracy in the stochastic analysis 
of soil-structure interaction system. Moreover, it also provides economic advantages both 
in terms of the fast stochastic analysis by introducing the pseudo-excitation method and 
avoiding the determination of eigenvalues and eigenvectors of the damped or undamped 
combined system by using the classical modal decomposition. To demonstrate the 
improvement of the method, two models representing the soil-structure interaction 
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system are analyzed in the following section. Numerical comparison with the exact 
results obtained by the Lin’s method (Lin and Zhang, 2004) and the approximate results 
by forced decoupling method are given to examine the accuracy and convergence of the 
new method. 

1. Simple 2 DOF model 

mg1 m1 

1 1 1 1c =2m ζ ω  

gu��  

g1 g1 g1 g1c =2m ζ ω

2
g1 g1 g1k =m ω 2

1 1 1k =m ω
g1u 1u

Soil Region Structure
 

Figure 2: 2 DOF model of soil-structure interaction system 

Figure 2 shows a simple 2 degree-of-freedom (DOF) model of soil-structure 
interaction system. According to the iterative equation proposed in this paper, the 
displacement PSD of the combined system can be obtained. For the model described in 
figure 2, the mass, stiffness, damping matrices and displacement response vector of the 
combined system can be defined as: 

1

1

0
0 g

m
m

⎡ ⎤
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M                             (24a) 

1 1 1 1 1 1
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2 2
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Thus, the linear transformation matrix can be constructed as: 
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0 0 1

s

g g

m

m

⎡ ⎤⎡ ⎤
⎢ ⎥= =⎢ ⎥
⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦

Φ
Φ

Φ
                     (25) 



Vol. 13, Bund. B 9 
 
Then, equation (8) can be written as： 
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Upon substitution of equation (26) into equation (11) one can obtain: 
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1 1 1 1 1 1 1 1 1 1
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     (27) 

For seismic analysis of the combined system, the external force can be expressed as： 

1
1 gu⎡ ⎤

= − ⎢ ⎥
⎣ ⎦

P M ��                             (28) 

Assume that the acceleration PSD of the ground motion gu��  is 
guS�� , the pseudo excitation 

in equation (10) is given by:  

1
1 g

r t
uS e ω⎡ ⎤

= − ⎢ ⎥
⎣ ⎦

P M �� , 1r = −                    (29) 

The stochastic model of ground motion, the Kanai-Tajimi model, is adopted here, which 

can be described as: 

4 2

02 2 2 2

(2 )
( ) (2 )g

g g g
u

g g g

S S
ω ζ ω ω

ω ω ζ ω ω
+

=
− +��                    (30) 

in which, 13.96rad/sgω =  and 0.72gζ = , which correspond to the site type 1 and the 
earthquake classification 3 defined in Chinese code. The intensity is assumed to be 

2 3
0 0.06m sS = . Suppose that 6

1 8 10 kgm = × , 8
1 8 10 kggm = × , 1 0.05ζ = , 1 0.1gζ = , 

1 10rad/sω = , 1 15rad/sgω = . Thus, the pseudo response can be calculated by the iterative 
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equation (12), and accordingly the PSD and spectral moments can also be obtained by 
equations (5), (13), (15) and (16).  
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Figure 3: Normalized RMS error of modal coordinate components versus 
number of iterations 
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Figure 4: Power spectral density function of structural relative 
displacement with damping ratio of soil region ξ=0.2 
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Figure 5: Mean square value of structural relative displacement versus 
damping ratio of soil region 

Figure 3 illustrates the convergence speed of the modal coordinate components by 
studying the variety of ( )k iErr , which represents the normalized root mean square (RMS) 
of norm error of the ith  component in kth  iteration. It is noted from figure 3 that 

( )k iErr  decreases dramatically along with iterative times increasing which indicates the 
availability of the iterative method. Moreover, in the simple 2 DOF model, the structural 
relative displacement with respect to the soil region is concerned, and it can be obtained 
by equations (14) by setting [1 1]= −Γ . Accordingly, in order to examine the accuracy 
of the iterative method, the PSD and mean square values of structural relative 
displacement corresponding to the exact solution, approximate solution and iterative 
solution are given in figure 4 and figure 5, in which the exact solution is obtained by 
Lin’s method (Lin and Zhang, 2004) and the approximate solution by the forced 
decoupling method. Figure 5 shows that the forced decoupling method might introduce 
gross obvious error for high non-proportional damping, and the iterative method can 
produce exact solution after a few iterations. Thus, the proposed method can be used for 
the stochastic analysis of the simple 2 DOF model of soil-structure interaction system. 

2. Lumped parameters model 

In order to study the validity of the proposed iterative method for stochastic analysis 
of soil-structure interaction system, a more applicable model compared with simple 2 
DOF model, which is called lumped parameters model, would be utilized in this section. 
In the last three decades, several lumped parameters models for soil-structure system 
have been proposed (Wolf and Somaini, 1983; De Barros and Luco, 1990; Jean, et al., 
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1990; Ruan and Lin, 1996), which commonly consist of an assembly of mass, damping 
and stiffness elements independent of frequencies. Because the lumped parameters model 
can account for the seismic characteristics of practical soil-structure interaction system in 
usual cases, it can be used to simulate the combined soil-structure system. In this section, 
Ruan and Lin’s 2 DOF lumped parameters model are adopted. Figure 6 is the schematic 
diagram of the model of combined soil-structure system. 
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Figure 6: 2 DOF lumped parameters model of soil-structure       
interaction system 

For the 2 DOF lumped parameters model of soil-structure interaction system 
described in Figure 6, the mass, stiffness and damping matrices are defined as: 
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Assume that the PSD of the ground motion gu��  is 
guS�� , the pseudo excitation in equation 

(10) is given by: 

( )2 11
g

r t
un S e ω

+ ×= −P M �� , 1r = −                     (34) 

In the numerical example, a 10-storey shear structure is selected with all the storey 
stiffnesses equal to 2×108 N/m and all the floor masses equal to 8×105 Kg. The Rayleigh 
damping is adopted, and a 5% damping ratio is considered for 1st and 5th mode of the 
structure. Only the horizontal motion of the combined system is considered in the 
example. Besides, the soil-structure interaction system is subjected to a white noise 
process with spectral amplitude equal to 2 30.6m s . For the simplified model of soil-
structure interaction system, the 8 parameters of 2-DOF lumped parameters model of soil 
region are given in the literatures (Ruan and Lin, 1996; Wang et al., 2007)： 

1 1

2 2

g fc f

g fc f

m m m
m m m

=⎧⎪
⎨ =⎪⎩

, 
1 1

2 2

3 3

g fc f

g fc f

g fc f

c c c
c c c
c c c

⎧ =
⎪ =⎨
⎪ =⎩

, 
1 1

2 2

3 3

g fc f

g fc f

g fc f

k k k
k k k
k k k

⎧ =
⎪ =⎨
⎪ =⎩

                (35a-c) 

in which fcm , fcc  and fck  are the normalization factors. For strip foundation, the 
parameters’ values can be given by： 

2
fc sk vπρ= , ( )2

0fc fc sm k r v= , ( )0fc fc sc k r v=                (36a-c) 

in which 3 32.6 10 kg mρ = ×  denotes the soil density. 250sv m s=  denotes shear wave 
velocity. 0 50r m=  is the width of the strip foundation. In this example, the poisson ratio is 
assumd to be 0.33, then the values of normalization factors can be obtained: 
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1 0.0013fm = , 2 0.347fm =                       (37a-b) 

1 2.085fk = , 2 0.447fk = − , 3 0.761fk =                 (37c-e) 

1 1.149fc = , 2 0.509fc = − , 3 1.194fc =                  (37f-h) 

In order to construct equation (12), the linear transformation matrix is obtained by 
equations (3) and (4). As same as example 1, the Kanai-Tajimi model is adopted as the 
stochastic model of ground motion, and the pseudo response of the combined soil-
structure system can be calculated by an iterative process, and accordingly the PSD and 
spectral moments can be obtained by equations (5), (13), (15) and (16). Figure 7 and 
figure 8 illustrate the convergence speed of the iterative method. The relative 
displacement of 1st, 5th, 10th floor with respect to the soil region is selected as the 
research objects, and they can be obtained by equations (14) by setting 

1 1 9[1 0 1 0]×= −Γ , 5 1 4 1 5[0 1 0 1 0]× ×= −Γ  and 10 1 9[0 1 1 0]×= −Γ . Accordingly, 
the mean square values of displacement of the 1st, 5th and 10th floor corresponding to 
the first several iterative times are shown in figure 9. For comparison, the exact results 
given by Lin’s method and the approximate results given by the forced decoupling 
method are also shown in the figure 9. It can be seen that the results obtained by the 
iterative method is close to the exact results after a few iterations. 
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Figure 7: Normalized RMS error of first 5 modal coordinate components 
versus number of iterations 
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Figure 8: Normalized RMS error of latter 5 modal coordinate components 
versus number of iterations 
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Figure 9: Mean square value of relative displacement versus of floor 1, 5 
and 10 with respect to the soil region 
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CONCLUSIONS 
In this paper, a fast stochastic analysis method of soil-structure interaction system 

has been presented. In the new method, the pseudo-excitation method and the classical 
modal decomposition is adopted to derivate an iterative sequence, which can exactly 
account for the non-proportional damping and dynamic interaction between the soil 
region and the structure without obviously increasing computational effort. Furthermore, 
the new method’s accuracy and convergence have been proved by some numerical 
examples belonging to two different models of soil-structure interaction system. 
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